Towards Hardware Supported Domain Generalization in DNN-based Edge Computing Devices for Health Monitoring.

Johnson Loh, Lyubov Dudchenko, Justus Viga, Tobias Gemmeke
{"title":"Towards Hardware Supported Domain Generalization in DNN-based Edge Computing Devices for Health Monitoring.","authors":"Johnson Loh, Lyubov Dudchenko, Justus Viga, Tobias Gemmeke","doi":"10.1109/TBCAS.2024.3418085","DOIUrl":null,"url":null,"abstract":"<p><p>Deep neural network (DNN) models have shown remarkable success in many real-world scenarios, such as object detection and classification. Unfortunately, these models are not yet widely adopted in health monitoring due to exceptionally high requirements for model robustness and deployment in highly resource-constrained devices. In particular, the acquisition of biosignals, such as electrocardiogram (ECG), is subject to large variations between training and deployment, necessitating domain generalization (DG) for robust classification quality across sensors and patients. The continuous monitoring of ECG also requires the execution of DNN models in convenient wearable devices, which is achieved by specialized ECG accelerators with small form factor and ultra-low power consumption. However, combining DG capabilities with ECG accelerators remains a challenge. This article provides a comprehensive overview of ECG accelerators and DG methods and discusses the implication of the combination of both domains, such that multi-domain ECG monitoring is enabled with emerging algorithm-hardware co-optimized systems. Within this context, an approach based on correction layers is proposed to deploy DG capabilities on the edge. Here, the DNN fine-tuning for unknown domains is limited to a single layer, while the remaining DNN model remains unmodified. Thus, computational complexity (CC) for DG is reduced with minimal memory overhead compared to conventional fine-tuning of the whole DNN model. The DNN model-dependent CC is reduced by more than 2.5 × compared to DNN fine-tuning at an average increase of F1 score by more than 20% on the generalized target domain. In summary, this article provides a novel perspective on robust DNN classification on the edge for health monitoring applications.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3418085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep neural network (DNN) models have shown remarkable success in many real-world scenarios, such as object detection and classification. Unfortunately, these models are not yet widely adopted in health monitoring due to exceptionally high requirements for model robustness and deployment in highly resource-constrained devices. In particular, the acquisition of biosignals, such as electrocardiogram (ECG), is subject to large variations between training and deployment, necessitating domain generalization (DG) for robust classification quality across sensors and patients. The continuous monitoring of ECG also requires the execution of DNN models in convenient wearable devices, which is achieved by specialized ECG accelerators with small form factor and ultra-low power consumption. However, combining DG capabilities with ECG accelerators remains a challenge. This article provides a comprehensive overview of ECG accelerators and DG methods and discusses the implication of the combination of both domains, such that multi-domain ECG monitoring is enabled with emerging algorithm-hardware co-optimized systems. Within this context, an approach based on correction layers is proposed to deploy DG capabilities on the edge. Here, the DNN fine-tuning for unknown domains is limited to a single layer, while the remaining DNN model remains unmodified. Thus, computational complexity (CC) for DG is reduced with minimal memory overhead compared to conventional fine-tuning of the whole DNN model. The DNN model-dependent CC is reduced by more than 2.5 × compared to DNN fine-tuning at an average increase of F1 score by more than 20% on the generalized target domain. In summary, this article provides a novel perspective on robust DNN classification on the edge for health monitoring applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在基于 DNN 的边缘计算设备中实现硬件支持的领域泛化,用于健康监测。
深度神经网络(DNN)模型在物体检测和分类等许多实际应用场景中都取得了显著的成功。遗憾的是,由于对模型鲁棒性和在资源高度紧张的设备中部署的要求极高,这些模型尚未被广泛应用于健康监测领域。特别是,心电图(ECG)等生物信号的采集在训练和部署过程中会出现很大的变化,这就需要进行领域泛化(DG),以获得跨传感器和跨患者的稳健分类质量。对心电图的连续监测还要求在方便的可穿戴设备中执行 DNN 模型,而这可以通过外形小巧、功耗超低的专用心电图加速器来实现。然而,如何将 DG 功能与心电图加速器相结合仍是一项挑战。本文全面概述了心电图加速器和 DG 方法,并讨论了将这两个领域结合起来的意义,从而利用新兴的算法-硬件协同优化系统实现多领域心电图监测。在此背景下,提出了一种基于校正层的方法,用于在边缘部署 DG 功能。在这里,针对未知域的 DNN 微调仅限于单层,而其余 DNN 模型保持不变。因此,与传统的整个 DNN 模型微调相比,DG 的计算复杂度(CC)降低了,内存开销最小。与 DNN 微调相比,与 DNN 模型相关的 CC 降低了 2.5 倍以上,在广义目标域上的 F1 分数平均提高了 20% 以上。总之,本文为健康监测应用的边缘稳健 DNN 分类提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient and Artifact-Resilient ASIC for Simultaneous Neural Recording and Optogenetic Stimulation. Integrated Real-Time CMOS Luminescence Sensing and Impedance Spectroscopy in Droplet Microfluidics. Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound. A Reconfigurable Bidirectional Wireless Power and Full-Duplex Data Transceiver IC for Wearable Biomedical Applications. An Ultrasonic Transceiver for Non-Invasive Intracranial Pressure Sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1