{"title":"Biomimetic lubricant-grafted surfaces on laser-textured microwell arrays with multifunctionality","authors":"Xiaorui Song, Zhiqiang Hou, Zhehao Gan, Yuyao Hu, Hongyu Zheng, Yongling Wu, Mingming Liu","doi":"10.1007/s40544-024-0906-3","DOIUrl":null,"url":null,"abstract":"<p>Recently, various slippery liquid-infused porous surfaces (SLIPS) have been fabricated for the protection of various materials. However, these SLIPSs are limited by their underlying storage structure and superficial lubricant layer, showing poor durability. Herein, inspired by the high-strength structure of Shell nacre’s “brick-mud” layer, we fabricated an all-inorganic composite coating by using wet chemically etched MXene as a brick and an aluminum phosphate binder (AP) as mud. Then, a series of microwell-array structures were designed and prepared on the coating via nanosecond ultrafast laser writing ablation technology. Subsequently, the textured surface was modified by a silane coupling agent. Vinyl-terminated polydimethylsiloxane (PDMS) was tightly grafted onto the porous surface through a thiol-ene click reaction to obtain lubricant grafted texture surface (LGTS). The prepared LGTS showed good lubrication properties for multiple phases, including various liquids, ice crystals, and solids. It exhibits excellent chemical stability and mechanical durability under deionized water impact, centrifugal test, strong acid solutions, anti/de-icing cycles, and high-intensity friction. Thus, the proposed strategy for constructing robust LGTS will greatly promote theoretical research on super wetting interfacial materials and their applications in the fields of antifouling, anti/de-icing, and lubricating protection.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-024-0906-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, various slippery liquid-infused porous surfaces (SLIPS) have been fabricated for the protection of various materials. However, these SLIPSs are limited by their underlying storage structure and superficial lubricant layer, showing poor durability. Herein, inspired by the high-strength structure of Shell nacre’s “brick-mud” layer, we fabricated an all-inorganic composite coating by using wet chemically etched MXene as a brick and an aluminum phosphate binder (AP) as mud. Then, a series of microwell-array structures were designed and prepared on the coating via nanosecond ultrafast laser writing ablation technology. Subsequently, the textured surface was modified by a silane coupling agent. Vinyl-terminated polydimethylsiloxane (PDMS) was tightly grafted onto the porous surface through a thiol-ene click reaction to obtain lubricant grafted texture surface (LGTS). The prepared LGTS showed good lubrication properties for multiple phases, including various liquids, ice crystals, and solids. It exhibits excellent chemical stability and mechanical durability under deionized water impact, centrifugal test, strong acid solutions, anti/de-icing cycles, and high-intensity friction. Thus, the proposed strategy for constructing robust LGTS will greatly promote theoretical research on super wetting interfacial materials and their applications in the fields of antifouling, anti/de-icing, and lubricating protection.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.