{"title":"Manipulation of perpendicular magnetization via magnon current with tilted polarization","authors":"","doi":"10.1016/j.matt.2024.05.045","DOIUrl":null,"url":null,"abstract":"<div><div><span><span>Field-free switching of perpendicular magnetization driven by magnons is a promising technology that can significantly reduce energy dissipation and potential damage to </span>spintronic<span> devices. However, achieving such switching experimentally often demands an additional in-plane magnetic field or other complex measures, severely limiting its prospects. Here, we have successfully demonstrated field-free switching of perpendicular magnetization through a magnon current with tilted polarization in specially designed all-oxide heterostructures of SrRuO</span></span><sub>3</sub>/LaMnO<sub>3</sub>/SrIrO<sub>3</sub>. The ferromagnetic interface, resulting from charge reconstruction between the LaMnO<sub>3</sub> and SrIrO<sub>3</sub> layers, generates a tilted-polarized magnon current. This magnon current effectively breaks the mirror symmetry that traditionally hinders deterministic switching in spin-orbit torque setups and realizes field-free switching of perpendicular magnetization. In addition, the critical switching current density is significantly lower than that in conventional metallic systems. These findings open a promising avenue for developing highly efficient all-oxide spintronic devices that can be operated by magnon current.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3489-3499"},"PeriodicalIF":17.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524003084","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Field-free switching of perpendicular magnetization driven by magnons is a promising technology that can significantly reduce energy dissipation and potential damage to spintronic devices. However, achieving such switching experimentally often demands an additional in-plane magnetic field or other complex measures, severely limiting its prospects. Here, we have successfully demonstrated field-free switching of perpendicular magnetization through a magnon current with tilted polarization in specially designed all-oxide heterostructures of SrRuO3/LaMnO3/SrIrO3. The ferromagnetic interface, resulting from charge reconstruction between the LaMnO3 and SrIrO3 layers, generates a tilted-polarized magnon current. This magnon current effectively breaks the mirror symmetry that traditionally hinders deterministic switching in spin-orbit torque setups and realizes field-free switching of perpendicular magnetization. In addition, the critical switching current density is significantly lower than that in conventional metallic systems. These findings open a promising avenue for developing highly efficient all-oxide spintronic devices that can be operated by magnon current.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.