Network analysis of marmoset cortical connections reveals pFC and sensory clusters.

IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY Frontiers in Neuroanatomy Pub Date : 2024-06-12 eCollection Date: 2024-01-01 DOI:10.3389/fnana.2024.1403170
Bernard A Pailthorpe
{"title":"Network analysis of marmoset cortical connections reveals pFC and sensory clusters.","authors":"Bernard A Pailthorpe","doi":"10.3389/fnana.2024.1403170","DOIUrl":null,"url":null,"abstract":"<p><p>A new analysis is presented of the retrograde tracer measurements of connections between anatomical areas of the marmoset cortex. The original normalisation of raw data yields the fractional link weight measure, FLNe. That is re-examined to consider other possible measures that reveal the underlying in link weights. Predictions arising from both are used to examine network modules and hubs. With inclusion of the in weights the InfoMap algorithm identifies eight structural modules in marmoset cortex. In and out hubs and major connector nodes are identified using module assignment and participation coefficients. Time evolving network tracing around the major hubs reveals medium sized clusters in pFC, temporal, auditory and visual areas; the most tightly coupled and significant of which is in the pFC. A complementary viewpoint is provided by examining the highest traffic links in the cortical network, and reveals parallel sensory flows to pFC and via association areas to frontal areas.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199858/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnana.2024.1403170","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A new analysis is presented of the retrograde tracer measurements of connections between anatomical areas of the marmoset cortex. The original normalisation of raw data yields the fractional link weight measure, FLNe. That is re-examined to consider other possible measures that reveal the underlying in link weights. Predictions arising from both are used to examine network modules and hubs. With inclusion of the in weights the InfoMap algorithm identifies eight structural modules in marmoset cortex. In and out hubs and major connector nodes are identified using module assignment and participation coefficients. Time evolving network tracing around the major hubs reveals medium sized clusters in pFC, temporal, auditory and visual areas; the most tightly coupled and significant of which is in the pFC. A complementary viewpoint is provided by examining the highest traffic links in the cortical network, and reveals parallel sensory flows to pFC and via association areas to frontal areas.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对狨猴皮层连接的网络分析揭示了前部大脑皮层和感觉集群。
本文对狨猴大脑皮层解剖区域之间连接的逆行示踪测量结果进行了新的分析。原始数据的原始归一化产生了分数链接权重测量值--FLNe。我们对其进行了重新研究,以考虑其他可能的测量方法,从而揭示连接权重的内在联系。由这两种方法得出的预测结果被用于研究网络模块和枢纽。加入内链权重后,InfoMap 算法确定了狨猴大脑皮层的八个结构模块。利用模块分配和参与系数确定了进出枢纽和主要连接节点。围绕主要枢纽的时间演化网络追踪揭示了前部大脑皮层、颞叶、听觉和视觉区域的中等规模集群;其中前部大脑皮层的集群耦合最紧密、最重要。通过对大脑皮层网络中流量最大的链接进行研究,可以提供一种补充观点,并揭示出平行的感觉流向大脑前部皮层,并通过联想区流向额叶区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Neuroanatomy
Frontiers in Neuroanatomy ANATOMY & MORPHOLOGY-NEUROSCIENCES
CiteScore
4.70
自引率
3.40%
发文量
122
审稿时长
>12 weeks
期刊介绍: Frontiers in Neuroanatomy publishes rigorously peer-reviewed research revealing important aspects of the anatomical organization of all nervous systems across all species. Specialty Chief Editor Javier DeFelipe at the Cajal Institute (CSIC) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
Algal polysaccharides: new perspectives for the treatment of basal ganglia neurodegenerative diseases. Editorial: The four streams of the prefrontal cortex. Deep peroneal neuropathy induced by prolonged squatting: a case report. Therapeutic ultrasound: an innovative approach for targeting neurological disorders affecting the basal ganglia. Topographic anatomy of the lateral surface of the parietal lobe and its relationship with white matter tracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1