Efficient degradation of F-53B as PFOS alternative in water by plasma discharge: Feasibility and mechanism insights

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2024-06-29 DOI:10.1016/j.jhazmat.2024.135069
Han Zhang, Yinyin Zhang, Luxiang Zhu, Yanan Liu
{"title":"Efficient degradation of F-53B as PFOS alternative in water by plasma discharge: Feasibility and mechanism insights","authors":"Han Zhang, Yinyin Zhang, Luxiang Zhu, Yanan Liu","doi":"10.1016/j.jhazmat.2024.135069","DOIUrl":null,"url":null,"abstract":"The frequent detection of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) in various environments has raised concerns owing to its comparable or even higher environmental persistence and toxicity than perfluorooctane sulfonate (PFOS). This study investigated the plasma degradation of F-53B for the first time using a water film plasma discharge system. The results revealed that F-53B demonstrated a higher rate constant but similar defluorination compared to PFOS, which could be ascribed to the introduction of the chlorine atom. Successful elimination (94.8–100 %) was attained at F-53B initial concentrations between 0.5 and 10 mg/L, with energy yields varying from 15.1 to 84.5 mg/kWh. The mechanistic exploration suggested that the decomposition of F-53B mainly occurred at the gas-liquid interface, where it directly reacted with reactive species generated by gas discharge. F-53B degradation pathways involving dechlorination, desulfonation, carboxylation, C-O bond cleavage, and stepwise CF elimination were proposed based on the identified byproducts and theoretical calculations. Furthermore, the demonstrated effectiveness in removing F-53B in various coexisting ions and water matrices highlighted the robust anti-interference ability of the treatment process. These findings provide mechanistic insights into the plasma degradation of F-53B, showcasing the potential of plasma processes for eliminating PFAS alternatives in water.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135069","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The frequent detection of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) in various environments has raised concerns owing to its comparable or even higher environmental persistence and toxicity than perfluorooctane sulfonate (PFOS). This study investigated the plasma degradation of F-53B for the first time using a water film plasma discharge system. The results revealed that F-53B demonstrated a higher rate constant but similar defluorination compared to PFOS, which could be ascribed to the introduction of the chlorine atom. Successful elimination (94.8–100 %) was attained at F-53B initial concentrations between 0.5 and 10 mg/L, with energy yields varying from 15.1 to 84.5 mg/kWh. The mechanistic exploration suggested that the decomposition of F-53B mainly occurred at the gas-liquid interface, where it directly reacted with reactive species generated by gas discharge. F-53B degradation pathways involving dechlorination, desulfonation, carboxylation, C-O bond cleavage, and stepwise CF elimination were proposed based on the identified byproducts and theoretical calculations. Furthermore, the demonstrated effectiveness in removing F-53B in various coexisting ions and water matrices highlighted the robust anti-interference ability of the treatment process. These findings provide mechanistic insights into the plasma degradation of F-53B, showcasing the potential of plasma processes for eliminating PFAS alternatives in water.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子放电法高效降解水中的全氟辛烷磺酸替代品 F-53B:可行性和机理研究
由于 6:2 氯化多氟醚磺酸盐(F-53B)具有与全氟辛烷磺酸(PFOS)相当甚至更高的环境持久性和毒性,因此在各种环境中频繁检测到该物质引起了人们的关注。本研究首次使用水膜等离子体放电系统对 F-53B 的等离子体降解进行了研究。结果显示,与全氟辛烷磺酸相比,F-53B 的速率常数更高,但脱氟效果相似,这可能是由于引入了氯原子。F-53B 的初始浓度在 0.5 至 10 毫克/升之间时,可成功消除(94.8%-100%),能量产量在 15.1 至 84.5 毫克/千瓦时之间。机理探索表明,F-53B 的分解主要发生在气液界面,在此与气体放电产生的反应物直接反应。根据确定的副产物和理论计算,提出了 F-53B 的降解途径,包括脱氯、脱硫、羧化、C-O 键裂解和逐步消除 CF。此外,在去除各种共存离子和水基质中的 F-53B 时所表现出的有效性突显了该处理工艺强大的抗干扰能力。这些研究结果提供了等离子体降解 F-53B 的机理见解,展示了等离子体工艺消除水中全氟辛烷磺酸替代品的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Efficient degradation of F-53B as PFOS alternative in water by plasma discharge: Feasibility and mechanism insights Endoplasmic reticulum stress response modulator OsbZIP39 regulates cadmium accumulation via activating the expression of defensin-like gene OsCAL2 in rice Ancestral sequence reconstruction of the prokaryotic three-domain laccases for efficiently degrading polyethylene Exposure to zinc and dialkyldimethyl ammonium compound alters bacterial community structure and resistance gene levels in partial sulfur autotrophic denitrification coupled with the Anammox process Are eco-friendly “green” tires also chemically green? Comparing metals, rubbers and selected organic compounds in green and conventional tires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1