A simple physical model for simulation and design magneto-plethysmograph in application non-invasive hemoglobin measurement.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2024-07-24 DOI:10.1088/2057-1976/ad5cf7
Sony Wardoyo, Mitra Djamal, Maman Budiman
{"title":"A simple physical model for simulation and design magneto-plethysmograph in application non-invasive hemoglobin measurement.","authors":"Sony Wardoyo, Mitra Djamal, Maman Budiman","doi":"10.1088/2057-1976/ad5cf7","DOIUrl":null,"url":null,"abstract":"<p><p>The magneto-plethysmograph method is a combination of magnetic field and sensors used to detect changes in blood flow pulsation. However, to detect the magnetic properties of blood related to hemoglobin concentration, physical modeling and simulation are required. This approach involves designing simulations using magnetic field equations and magnetic susceptibility, where a permanent magnet is placed on the surface of blood vessels, and sensors based on giant magnetoresistance are placed at a distance r. The design originates from a simple approach involving the magnetization and detection of Fe atoms in hemoglobin. Parameters involved include the magnetic susceptibility of oxyhemoglobin and deoxyhemoglobin, with an external magnetic field exceeding 1 Tesla. From the physical modeling and simulation, graphs are obtained depicting the influence of hemoglobin concentration on the number of Fe atoms and its magnetization. This enables the design of non-invasive hemoglobin measurement sensor devices. The uniqueness of this simple physical model and simulation lies in its ability to produce specially designed device models for measuring hemoglobin concentration. This differs from other research focusing on blood flow pulse measurements; the results of this study provide new insights into the benefits of simple physics equations that can be developed for medical diagnostic research and device development.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad5cf7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The magneto-plethysmograph method is a combination of magnetic field and sensors used to detect changes in blood flow pulsation. However, to detect the magnetic properties of blood related to hemoglobin concentration, physical modeling and simulation are required. This approach involves designing simulations using magnetic field equations and magnetic susceptibility, where a permanent magnet is placed on the surface of blood vessels, and sensors based on giant magnetoresistance are placed at a distance r. The design originates from a simple approach involving the magnetization and detection of Fe atoms in hemoglobin. Parameters involved include the magnetic susceptibility of oxyhemoglobin and deoxyhemoglobin, with an external magnetic field exceeding 1 Tesla. From the physical modeling and simulation, graphs are obtained depicting the influence of hemoglobin concentration on the number of Fe atoms and its magnetization. This enables the design of non-invasive hemoglobin measurement sensor devices. The uniqueness of this simple physical model and simulation lies in its ability to produce specially designed device models for measuring hemoglobin concentration. This differs from other research focusing on blood flow pulse measurements; the results of this study provide new insights into the benefits of simple physics equations that can be developed for medical diagnostic research and device development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于仿真和设计无创血红蛋白测量应用中的磁动搏动仪的简单物理模型。
磁流体搏动仪方法是磁场和传感器的结合,用于检测血流搏动的变化。然而,要检测与血红蛋白浓度相关的血液磁特性,需要进行物理建模和模拟。这种方法涉及使用磁场方程和磁感应强度进行模拟设计,在血管表面放置一块永久磁铁,并在一定距离 r 处放置基于巨磁阻的传感器。涉及的参数包括氧合血红蛋白和脱氧血红蛋白的磁感应强度,外部磁场超过 1 特斯拉。通过物理建模和模拟,可以得到血红蛋白浓度对铁原子数量及其磁化的影响曲线图。这样就能设计出无创血红蛋白测量传感器设备。这种简单物理模型和模拟的独特之处在于,它能够产生专门设计的血红蛋白浓度测量设备模型。这与其他专注于血流脉冲测量的研究不同;这项研究的结果提供了新的见解,使人们认识到简单物理方程的益处,可用于医学诊断研究和设备开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Innovative 3D bioprinting approaches for advancing brain science and medicine: a literature review. Assessing Anticancer Properties of PEGylated Platinum Nanoparticles on Human Breast Cancer Cell lines using in-vitro Assays. Prediction of directional solidification in freeze casting of biomaterial scaffolds using physics-informed neural networks. Synthetic CT generation from CBCT based on structural constraint cycle-EEM-GAN Detection of Invasive Ductal Carcinoma by Electrical Impedance Spectroscopy Implementing Gaussian Relaxation-Time Distribution (EIS-GRTD).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1