Elysse A. Phillips, Yem J. Alharithi, Leena Kadam, Lisa M. Coussens, Sushil Kumar, Alina Maloyan
{"title":"Metabolic abnormalities in the bone marrow cells of young offspring born to mothers with obesity","authors":"Elysse A. Phillips, Yem J. Alharithi, Leena Kadam, Lisa M. Coussens, Sushil Kumar, Alina Maloyan","doi":"10.1038/s41366-024-01563-x","DOIUrl":null,"url":null,"abstract":"Intrauterine metabolic reprogramming occurs in mothers with obesity during gestation, putting the offspring at high risk of developing obesity and associated metabolic disorders even before birth. We have generated a mouse model of maternal high-fat diet-induced obesity that recapitulates the metabolic changes seen in humans born to women with obesity. Here, we profiled and compared the metabolic characteristics of bone marrow cells of newly weaned 3-week-old offspring of dams fed either a high-fat (Off-HFD) or a regular diet (Off-RD). We utilized a state-of-the-art flow cytometry, and targeted metabolomics approach coupled with a Seahorse metabolic analyzer. We revealed significant metabolic perturbation in the offspring of HFD-fed vs. RD-fed dams, including utilization of glucose primarily via oxidative phosphorylation. We also show a reduction in levels of amino acids, a phenomenon previously linked to bone marrow aging. Using flow cytometry, we found changes in the immune complexity of bone marrow cells and identified a unique B cell population expressing CD19 and CD11b in the bone marrow of three-week-old offspring of high-fat diet-fed mothers. Our data also revealed increased expression of Cyclooxygenase-2 (COX-2) on myeloid CD11b, and on CD11bhi B cells. Altogether, we demonstrate that the offspring of mothers with obesity show metabolic and immune changes in the bone marrow at a very young age and prior to any symptomatic metabolic disease.","PeriodicalId":14183,"journal":{"name":"International Journal of Obesity","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Obesity","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41366-024-01563-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Intrauterine metabolic reprogramming occurs in mothers with obesity during gestation, putting the offspring at high risk of developing obesity and associated metabolic disorders even before birth. We have generated a mouse model of maternal high-fat diet-induced obesity that recapitulates the metabolic changes seen in humans born to women with obesity. Here, we profiled and compared the metabolic characteristics of bone marrow cells of newly weaned 3-week-old offspring of dams fed either a high-fat (Off-HFD) or a regular diet (Off-RD). We utilized a state-of-the-art flow cytometry, and targeted metabolomics approach coupled with a Seahorse metabolic analyzer. We revealed significant metabolic perturbation in the offspring of HFD-fed vs. RD-fed dams, including utilization of glucose primarily via oxidative phosphorylation. We also show a reduction in levels of amino acids, a phenomenon previously linked to bone marrow aging. Using flow cytometry, we found changes in the immune complexity of bone marrow cells and identified a unique B cell population expressing CD19 and CD11b in the bone marrow of three-week-old offspring of high-fat diet-fed mothers. Our data also revealed increased expression of Cyclooxygenase-2 (COX-2) on myeloid CD11b, and on CD11bhi B cells. Altogether, we demonstrate that the offspring of mothers with obesity show metabolic and immune changes in the bone marrow at a very young age and prior to any symptomatic metabolic disease.
期刊介绍:
The International Journal of Obesity is a multi-disciplinary forum for research describing basic, clinical and applied studies in biochemistry, physiology, genetics and nutrition, molecular, metabolic, psychological and epidemiological aspects of obesity and related disorders.
We publish a range of content types including original research articles, technical reports, reviews, correspondence and brief communications that elaborate on significant advances in the field and cover topical issues.