{"title":"Gene expression profile of human placental villous pericytes in the first trimester – An analysis by single-cell RNA sequencing","authors":"Zhao Liu","doi":"10.1016/j.repbio.2024.100919","DOIUrl":null,"url":null,"abstract":"<div><p>Mesenchymal cells within theplacental villi play a crucial role in shaping the morphology of branching structures and driving the development of blood vessels. However, the markers and functions of placental villous pericytes (PVPs) as distinct subgroups of placental villous mesenchymal cells, remain unclear. Therefore, in this study, the markers and functions of PVPs were investigated. Single-cell sequencing data from the first-trimester placental villi was obtained and the Seurat tool was used to identify PVP markers. Gene Ontology (GO) analysis of specific genes was performed using the DAVID database. The Cellchat tool was employed to investigate the interaction signals between the PVPs and other cells. Expression of the PVP markers was confirmed using immunofluorescence. Presence of extracellular vesicles in the placental villous mesenchyme and PVPs was examined by transmission electron microscopy. Our findings revealed that renin (REN) and amphiregulin (AREG)-positive fibroblasts in the placental villi specifically expressed several classic pericyte markers. In the first trimester, certain conserved functions of pericytes were observed and they displayed tissue-specific functions such as in the integrin-mediated signaling pathway and extracellular exosomes. Moreover, the placental villous mesenchyme was found to be rich in extracellular vesicles. AREG is specifically transcribed in the first trimester PVPs, however, its protein was located in syncytiotrophoblasts. These insights contribute to a comprehensive understanding of early placental development and offer new therapeutic targets for placenta-derived pregnancy complications.</p></div>","PeriodicalId":21018,"journal":{"name":"Reproductive biology","volume":"24 3","pages":"Article 100919"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1642431X24000652","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mesenchymal cells within theplacental villi play a crucial role in shaping the morphology of branching structures and driving the development of blood vessels. However, the markers and functions of placental villous pericytes (PVPs) as distinct subgroups of placental villous mesenchymal cells, remain unclear. Therefore, in this study, the markers and functions of PVPs were investigated. Single-cell sequencing data from the first-trimester placental villi was obtained and the Seurat tool was used to identify PVP markers. Gene Ontology (GO) analysis of specific genes was performed using the DAVID database. The Cellchat tool was employed to investigate the interaction signals between the PVPs and other cells. Expression of the PVP markers was confirmed using immunofluorescence. Presence of extracellular vesicles in the placental villous mesenchyme and PVPs was examined by transmission electron microscopy. Our findings revealed that renin (REN) and amphiregulin (AREG)-positive fibroblasts in the placental villi specifically expressed several classic pericyte markers. In the first trimester, certain conserved functions of pericytes were observed and they displayed tissue-specific functions such as in the integrin-mediated signaling pathway and extracellular exosomes. Moreover, the placental villous mesenchyme was found to be rich in extracellular vesicles. AREG is specifically transcribed in the first trimester PVPs, however, its protein was located in syncytiotrophoblasts. These insights contribute to a comprehensive understanding of early placental development and offer new therapeutic targets for placenta-derived pregnancy complications.
期刊介绍:
An official journal of the Society for Biology of Reproduction and the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn, Poland.
Reproductive Biology is an international, peer-reviewed journal covering all aspects of reproduction in vertebrates. The journal invites original research papers, short communications, review articles and commentaries dealing with reproductive physiology, endocrinology, immunology, molecular and cellular biology, receptor studies, animal breeding as well as andrology, embryology, infertility, assisted reproduction and contraception. Papers from both basic and clinical research will be considered.