Electrically Controlled High Sensitivity Strain Modulation in MoS2 Field-Effect Transistors via a Piezoelectric Thin Film on Silicon Substrates.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-07-01 DOI:10.1021/acs.nanolett.4c00357
Abin Varghese, Adityanarayan H Pandey, Pooja Sharma, Yuefeng Yin, Nikhil V Medhekar, Saurabh Lodha
{"title":"Electrically Controlled High Sensitivity Strain Modulation in MoS<sub>2</sub> Field-Effect Transistors via a Piezoelectric Thin Film on Silicon Substrates.","authors":"Abin Varghese, Adityanarayan H Pandey, Pooja Sharma, Yuefeng Yin, Nikhil V Medhekar, Saurabh Lodha","doi":"10.1021/acs.nanolett.4c00357","DOIUrl":null,"url":null,"abstract":"<p><p>Strain can modulate bandgap and carrier mobilities in two-dimensional (2D) materials. Conventional strain-application methodologies relying on flexible/patterned/nanoindented substrates are limited by low thermal tolerance, poor tunability, and/or scalability. Here, we leverage the converse piezoelectric effect to electrically generate and control strain transfer from a piezoelectric thin film to electromechanically coupled 2D MoS<sub>2</sub>. Electrical bias polarity change across the piezo film tunes the nature of strain transferred to MoS<sub>2</sub> from compressive (∼0.23%) to tensile (∼0.14%) as verified through Raman and photoluminescence spectroscopies and substantiated by density functional theory calculations. The device architecture, on silicon substrate, integrates an MoS<sub>2</sub> field-effect transistor on a metal-piezoelectric-metal stack enabling strain modulation of transistor drain current (130×), on/off ratio (150×), and mobility (1.19×) with high precision, reversibility, and resolution. Large, tunable tensile (1056) and compressive (-1498) strain gauge factors, electrical strain modulation, and high thermal tolerance promise facile integration with silicon-based CMOS and micro-electromechanical systems.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c00357","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Strain can modulate bandgap and carrier mobilities in two-dimensional (2D) materials. Conventional strain-application methodologies relying on flexible/patterned/nanoindented substrates are limited by low thermal tolerance, poor tunability, and/or scalability. Here, we leverage the converse piezoelectric effect to electrically generate and control strain transfer from a piezoelectric thin film to electromechanically coupled 2D MoS2. Electrical bias polarity change across the piezo film tunes the nature of strain transferred to MoS2 from compressive (∼0.23%) to tensile (∼0.14%) as verified through Raman and photoluminescence spectroscopies and substantiated by density functional theory calculations. The device architecture, on silicon substrate, integrates an MoS2 field-effect transistor on a metal-piezoelectric-metal stack enabling strain modulation of transistor drain current (130×), on/off ratio (150×), and mobility (1.19×) with high precision, reversibility, and resolution. Large, tunable tensile (1056) and compressive (-1498) strain gauge factors, electrical strain modulation, and high thermal tolerance promise facile integration with silicon-based CMOS and micro-electromechanical systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过硅基板上的压电薄膜实现 MoS2 场效应晶体管中的电控高灵敏度应变调制。
应变可以调节二维(2D)材料的带隙和载流子迁移率。传统的应变应用方法依赖于柔性/图案/纳米凹痕基底,但受限于热耐受性低、可调性差和/或可扩展性差。在这里,我们利用压电效应的反向作用,从压电薄膜到机电耦合的二维 MoS2,以电气方式产生和控制应变传递。通过拉曼光谱和光致发光光谱的验证以及密度泛函理论计算的证实,压电薄膜上的电偏压极性变化可将转移到 MoS2 上的应变性质从压缩(∼0.23%)调整为拉伸(∼0.14%)。该器件结构基于硅衬底,在金属-压电-金属叠层上集成了一个 MoS2 场效应晶体管,能够以高精度、可逆性和高分辨率对晶体管漏极电流(130 倍)、导通/关断比(150 倍)和迁移率(1.19 倍)进行应变调制。可调的拉伸(1056)和压缩(-1498)应变系数大、电应变调制和高热耐受性使其可以方便地与硅基 CMOS 和微机电系统集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Cu(II) Specifically Disassembles Insulin Amyloid Nanostructures via Direct Interaction with Cross-β Fibrils. Direct Determination of Torsion in Twisted Graphite and MoS2 Interfaces. Improvement in ORR Durability of Fe Single-Atom Carbon Catalysts Hybridized with CeO2 Nanozyme. Magnetic Structure-Dependent Ultrafast Spin Relaxation in Magnet CrI3: A Time-Domain ab Initio Study. Single-Cell Synchro-Subtractive-Additive Nanoscale Surgery with Femtosecond Lasers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1