Engineering of Rieske dioxygenase variants with improved cis-dihydroxylation activity for benzoates

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology and Bioengineering Pub Date : 2024-07-01 DOI:10.1002/bit.28786
Phillip C. Betts, Spencer J. Blakely, Bailey N. Rutkowski, Brandon Bender, Cole Klingler, Jordan T. Froese
{"title":"Engineering of Rieske dioxygenase variants with improved cis-dihydroxylation activity for benzoates","authors":"Phillip C. Betts,&nbsp;Spencer J. Blakely,&nbsp;Bailey N. Rutkowski,&nbsp;Brandon Bender,&nbsp;Cole Klingler,&nbsp;Jordan T. Froese","doi":"10.1002/bit.28786","DOIUrl":null,"url":null,"abstract":"<p>Rieske dioxygenases have a long history of being utilized as green chemical tools in the organic synthesis of high-value compounds, due to their capacity to perform the <i>cis</i>-dihydroxylation of a wide variety of aromatic substrates. The practical utility of these enzymes has been hampered however by steric and electronic constraints on their substrate scopes, resulting in limited reactivity with certain substrate classes. Herein, we report the engineering of a widely used member of the Rieske dioxygenase class of enzymes, toluene dioxygenase (TDO), to produce improved variants with greatly increased activity for the <i>cis</i>-dihydroxylation of benzoates. Through rational mutagenesis and screening, TDO variants with substantially improved activity over the wild-type enzyme were identified. Homology modeling, docking studies, molecular dynamics simulations, and substrate tunnel analysis were applied in an effort to elucidate how the identified mutations resulted in improved activity for this polar substrate class. These analyses revealed modification of the substrate tunnel as the likely cause of the improved activity observed with the best-performing enzyme variants.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28786","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rieske dioxygenases have a long history of being utilized as green chemical tools in the organic synthesis of high-value compounds, due to their capacity to perform the cis-dihydroxylation of a wide variety of aromatic substrates. The practical utility of these enzymes has been hampered however by steric and electronic constraints on their substrate scopes, resulting in limited reactivity with certain substrate classes. Herein, we report the engineering of a widely used member of the Rieske dioxygenase class of enzymes, toluene dioxygenase (TDO), to produce improved variants with greatly increased activity for the cis-dihydroxylation of benzoates. Through rational mutagenesis and screening, TDO variants with substantially improved activity over the wild-type enzyme were identified. Homology modeling, docking studies, molecular dynamics simulations, and substrate tunnel analysis were applied in an effort to elucidate how the identified mutations resulted in improved activity for this polar substrate class. These analyses revealed modification of the substrate tunnel as the likely cause of the improved activity observed with the best-performing enzyme variants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工程设计 Rieske 二氧化酶变体,提高苯甲酸酯顺式二羟基化活性。
里斯克二加氧酶具有对多种芳香底物进行顺式二羟基化反应的能力,因此长期以来一直被用作有机合成高价值化合物的绿色化学工具。然而,这些酶的实用性受到其底物范围的立体和电子限制的阻碍,导致其与某些底物类别的反应能力有限。在此,我们报告了对 Rieske 二氧化酶中一种广泛使用的酶--甲苯二氧化酶(TDO)--的工程化研究,以生产出活性大大提高的改良变体,用于苯甲酸酯的顺式二羟基化。通过合理的诱变和筛选,发现了比野生型酶活性大大提高的 TDO 变体。我们应用同源建模、对接研究、分子动力学模拟和底物隧道分析,努力阐明所发现的突变是如何提高这种极性底物的活性的。这些分析表明,底物隧道的改变可能是导致表现最好的酶变体活性提高的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
期刊最新文献
Glycosylation in Drosophila S2 cells. Sequential delivery of photosensitizers and checkpoint inhibitors by engineered bacteria for enhanced cancer photodynamic immunotherapy. CILF: CRISPR/Cas9 based integration of large DNA fragments in Saccharomyces cerevisiae. Systematic mutational analysis reveals an essential role of N275 in IgE stability. Multidose transient transfection of human embryonic kidney 293 cells modulates recombinant adeno-associated virus2/5 Rep protein expression and influences the enrichment fraction of filled capsids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1