Sequential delivery of photosensitizers and checkpoint inhibitors by engineered bacteria for enhanced cancer photodynamic immunotherapy

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology and Bioengineering Pub Date : 2024-08-13 DOI:10.1002/bit.28829
Xinyu Liu, Yali Fan, Xinyu Zhang, Lianyue Li, Chao Yang, Xiaoyan Ma, Guijie Bai, Dawei Sun, Yaxin Wang, Junyi Wang, Yong Li, Yanyan Shi, Jing Liu, Yingying Zhang, Hanjie Wang
{"title":"Sequential delivery of photosensitizers and checkpoint inhibitors by engineered bacteria for enhanced cancer photodynamic immunotherapy","authors":"Xinyu Liu,&nbsp;Yali Fan,&nbsp;Xinyu Zhang,&nbsp;Lianyue Li,&nbsp;Chao Yang,&nbsp;Xiaoyan Ma,&nbsp;Guijie Bai,&nbsp;Dawei Sun,&nbsp;Yaxin Wang,&nbsp;Junyi Wang,&nbsp;Yong Li,&nbsp;Yanyan Shi,&nbsp;Jing Liu,&nbsp;Yingying Zhang,&nbsp;Hanjie Wang","doi":"10.1002/bit.28829","DOIUrl":null,"url":null,"abstract":"<p>Engineered bacteria-based cancer therapy has increasingly been considered to be a promising therapeutic strategy due to the development of synthetic biology. Wherein, engineering bacteria-mediated photodynamic therapy (PDT)-immunotherapy shows greater advantages and potential in treatment efficiency than monotherapy. However, the unsustainable regeneration of photosensitizers (PSs) and weak immune responses limit the therapeutic efficiency. Herein, we developed an engineered bacteria-based delivery system for sequential delivery of PSs and checkpoint inhibitors in cancer PDT-immunotherapy. The biosynthetic pathway of 5-aminolevulinic acid (5-ALA) was introduced into <i>Escherichia coli</i>, yielding a supernatant concentration of 172.19 mg/L after 10 h of growth. And another strain was endowed with the light-controllable releasement of anti-programmed cell death-ligand 1 nanobodies (anti-PD-L1). This system exhibited a collaborative effect, where PDT initiated tumor cell death and the released tumor cell fragments stimulated immunity, followed by the elimination of residual tumor cells. The tumor inhibition rate reached 74.97%, and the portion of activated T cells and inflammatory cytokines were reinforced. The results demonstrated that the engineered bacteria-based collaborative system could sequentially deliver therapeutic substance and checkpoint inhibitors, and achieve good therapeutic therapy. This paper will provide a new perspective for the cancer PDT-immunotherapy.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"121 12","pages":"3881-3892"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28829","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Engineered bacteria-based cancer therapy has increasingly been considered to be a promising therapeutic strategy due to the development of synthetic biology. Wherein, engineering bacteria-mediated photodynamic therapy (PDT)-immunotherapy shows greater advantages and potential in treatment efficiency than monotherapy. However, the unsustainable regeneration of photosensitizers (PSs) and weak immune responses limit the therapeutic efficiency. Herein, we developed an engineered bacteria-based delivery system for sequential delivery of PSs and checkpoint inhibitors in cancer PDT-immunotherapy. The biosynthetic pathway of 5-aminolevulinic acid (5-ALA) was introduced into Escherichia coli, yielding a supernatant concentration of 172.19 mg/L after 10 h of growth. And another strain was endowed with the light-controllable releasement of anti-programmed cell death-ligand 1 nanobodies (anti-PD-L1). This system exhibited a collaborative effect, where PDT initiated tumor cell death and the released tumor cell fragments stimulated immunity, followed by the elimination of residual tumor cells. The tumor inhibition rate reached 74.97%, and the portion of activated T cells and inflammatory cytokines were reinforced. The results demonstrated that the engineered bacteria-based collaborative system could sequentially deliver therapeutic substance and checkpoint inhibitors, and achieve good therapeutic therapy. This paper will provide a new perspective for the cancer PDT-immunotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过工程细菌依次递送光敏剂和检查点抑制剂,增强癌症光动力免疫疗法。
随着合成生物学的发展,以工程细菌为基础的癌症疗法越来越被认为是一种前景广阔的治疗策略。其中,工程细菌介导的光动力疗法(PDT)-免疫疗法在治疗效率方面比单一疗法显示出更大的优势和潜力。然而,光敏剂(PSs)的不可持续再生和免疫反应弱限制了治疗效率。在此,我们开发了一种基于细菌的工程化递送系统,用于在癌症光动力疗法-免疫疗法中顺序递送光敏剂和检查点抑制剂。我们将 5-aminolevulinic acid(5-ALA)的生物合成途径引入大肠杆菌,经过 10 小时的生长,上清液浓度达到 172.19 mg/L。而另一种菌株则被赋予了抗程序性细胞死亡配体 1 纳米抗体(anti-PD-L1)的光控释放功能。该系统表现出一种协同效应:PDT 启动肿瘤细胞死亡,释放的肿瘤细胞碎片刺激免疫,然后消除残余肿瘤细胞。肿瘤抑制率达到了 74.97%,活化 T 细胞和炎症细胞因子的比例也得到了提高。研究结果表明,基于工程菌的协作系统可以依次递送治疗物质和检查点抑制剂,达到良好的治疗效果。本文将为癌症光动力疗法-免疫疗法提供一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
期刊最新文献
Plant-Made Vaccines Targeting Enteric Pathogens—Safe Alternatives for Vaccination in Developing Countries Exploration of the Out-of-Phase Phenomenon in Shake Flasks by CFD Calculations of Volumetric Power Input, kLa Value and Shear Rate at Elevated Viscosity High-Efficiency Genome Editing in Naturally Isolated Aeromonas hydrophila and Edwardsiella Piscicida Using the CRISPR-Cas9 System AtLEC2-Mediated Enhancement of Endoplasmic Reticulum-Targeted Foreign Protein Synthesis in Nicotiana benthamiana Leaves: Insights From Transcriptomic Analysis. Deciphering the Catalytic Proficiency and Mechanism of the N-Acetylglucosamine Deacetylase From Pantoea dispersa.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1