Mesoporous architectural magnetic halloysite-polymer beads for removing toxic streptomycin from water: A sustainable remediation approach

IF 4.9 Q2 ENGINEERING, ENVIRONMENTAL Groundwater for Sustainable Development Pub Date : 2024-06-26 DOI:10.1016/j.gsd.2024.101258
Amal Kanti Deb , Mohammad Mahmudur Rahman , Bhabananda Biswas , Yunfei Xi , Md. Rashidul Islam , Masud Hassan , Ravi Naidu
{"title":"Mesoporous architectural magnetic halloysite-polymer beads for removing toxic streptomycin from water: A sustainable remediation approach","authors":"Amal Kanti Deb ,&nbsp;Mohammad Mahmudur Rahman ,&nbsp;Bhabananda Biswas ,&nbsp;Yunfei Xi ,&nbsp;Md. Rashidul Islam ,&nbsp;Masud Hassan ,&nbsp;Ravi Naidu","doi":"10.1016/j.gsd.2024.101258","DOIUrl":null,"url":null,"abstract":"<div><p>Streptomycin (STR) is a widely used antibiotic to treat various infectious diseases in humans and animals. Increased STR production and distribution result in harmful residue in soil and water. Consequently, STR exists in biotic- and abiotic-counterpart of the environment and poses potential toxicity and risk due to its bioaccumulation and biomagnification properties. Sustainable remediation of STR from wastewater requires selective, minimal, low-cost, regenerable, and reusable materials as adsorbents. In this study, magnetic-halloysite incorporated polymer composite beads (SPHM) were synthesized and used for the efficient clean-up of toxic STR from wastewater. SPHM has a mesoporous structure with an abundance of oxygen-containing functional groups and exhibits a synergistic STR clean up performance (q<sub>m</sub> = 235.71 ± 13.98 mg/g). Sorption and interfacial studies revealed that diffusion, hydrophobic and ionic interactions, including electrostatic interaction, are involved in STR remediation. Electrostatic interaction plays a vital role alongside the physical sorption mechanism due to the presence of hydroxyl and carboxyl groups induced from poly (vinyl alcohol) and sodium alginate. Moreover, X-ray photoelectron spectroscopy (XPS) and Time-of-flight secondary ion mass spectrometry (ToF-SIMS) analyses confirm the involvement of opposing charged groups of SPHM and STR in adsorption. SPHM can be magnetically separated in just 20 s and is regenerable and reusable up to 10 times, with outstanding performance and stability. The sorption process requires only a minimal amount of SPHM, i.e., 0.5 g/L for STR clean-up. Even the natural surface water composition did not affect its performance. Hence, natural nanoclay-based, biocompatible and low-cost SPHM has a great potential for the sustainable remediation of streptomycin and other similar antibiotics from wastewater.</p></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24001814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Streptomycin (STR) is a widely used antibiotic to treat various infectious diseases in humans and animals. Increased STR production and distribution result in harmful residue in soil and water. Consequently, STR exists in biotic- and abiotic-counterpart of the environment and poses potential toxicity and risk due to its bioaccumulation and biomagnification properties. Sustainable remediation of STR from wastewater requires selective, minimal, low-cost, regenerable, and reusable materials as adsorbents. In this study, magnetic-halloysite incorporated polymer composite beads (SPHM) were synthesized and used for the efficient clean-up of toxic STR from wastewater. SPHM has a mesoporous structure with an abundance of oxygen-containing functional groups and exhibits a synergistic STR clean up performance (qm = 235.71 ± 13.98 mg/g). Sorption and interfacial studies revealed that diffusion, hydrophobic and ionic interactions, including electrostatic interaction, are involved in STR remediation. Electrostatic interaction plays a vital role alongside the physical sorption mechanism due to the presence of hydroxyl and carboxyl groups induced from poly (vinyl alcohol) and sodium alginate. Moreover, X-ray photoelectron spectroscopy (XPS) and Time-of-flight secondary ion mass spectrometry (ToF-SIMS) analyses confirm the involvement of opposing charged groups of SPHM and STR in adsorption. SPHM can be magnetically separated in just 20 s and is regenerable and reusable up to 10 times, with outstanding performance and stability. The sorption process requires only a minimal amount of SPHM, i.e., 0.5 g/L for STR clean-up. Even the natural surface water composition did not affect its performance. Hence, natural nanoclay-based, biocompatible and low-cost SPHM has a great potential for the sustainable remediation of streptomycin and other similar antibiotics from wastewater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于去除水中有毒链霉素的介孔建筑磁性埃洛石-聚合物珠:一种可持续的修复方法
链霉素(STR)是一种广泛用于治疗人类和动物各种传染性疾病的抗生素。链霉素生产和销售的增加导致其在土壤和水中的有害残留。因此,STR 存在于环境的生物和非生物部分,并因其生物累积和生物放大特性而具有潜在的毒性和风险。废水中 STR 的可持续修复需要选择性强、成本低、可再生、可重复使用的材料作为吸附剂。在这项研究中,合成了磁性合金岩聚合物复合珠(SPHM),并将其用于有效净化废水中的有毒 STR。SPHM 具有介孔结构,含有大量含氧官能团,具有协同净化 STR 的性能(qm = 235.71 ± 13.98 mg/g)。吸附和界面研究表明,扩散、疏水和离子相互作用(包括静电作用)参与了 STR 的修复。由于聚(乙烯醇)和海藻酸钠中存在羟基和羧基,静电作用与物理吸附机制一起发挥了重要作用。此外,X 射线光电子能谱(XPS)和飞行时间二次离子质谱(ToF-SIMS)分析证实了 SPHM 和 STR 的对立带电基团参与了吸附。SPHM 可在短短 20 秒内通过磁力分离,并可再生和重复使用多达 10 次,具有出色的性能和稳定性。吸附过程只需要极少量的 SPHM,即 0.5 克/升的 STR 清除量。即使是天然地表水成分也不会影响其性能。因此,基于天然纳米粘土、生物相容性好且成本低廉的 SPHM 在可持续修复废水中的链霉素和其他类似抗生素方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Groundwater for Sustainable Development
Groundwater for Sustainable Development Social Sciences-Geography, Planning and Development
CiteScore
11.50
自引率
10.20%
发文量
152
期刊介绍: Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.
期刊最新文献
Spatial and temporal variations of dug well water quality in Korba basin, Chhattisgarh, India: Insights into hydrogeological characteristics Investigating the role of groundwater in ecosystem water use efficiency in India considering irrigation, climate and land use Assessing anthropogenic and natural influences on water quality in a critical shallow groundwater system: Insights from the Metauro River basin (Central Italy) Microplastics in water from the Cooum River, Chennai, India: An assessment of their distribution, composition, and environmental impact Effect of salinity-clay variation on the transient magnetic field in the Quaternary aquifer, theoretically and practically
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1