{"title":"Mean wave direction and wave height in the ERA5 reanalysis dataset: Comparison with measured data in the coastal waters of India","authors":"A. Anusree , V.Sanil Kumar","doi":"10.1016/j.dynatmoce.2024.101478","DOIUrl":null,"url":null,"abstract":"<div><p>Information on wave direction and height is an important input to the coastal engineers. The availability of measured data at every location in the ocean makes maritime operations smoother. However, the practical impossibility makes it to look for alternative datasets like ERA5 reanalysis data. In this study, we compare the significant wave height and mean wave direction in the ERA5 with the buoy-measured data available at the nearest locations in the coastal waters of India. Even though the ERA5 overestimates the measured significant wave heights at certain instances, they both are in good agreement at most of the locations. The correlation coefficient varies from 0.82 to 0.99, with the RMSE falling between 0.15 and 0.31 m. However, the ERA5 wave direction deviates significantly from the measured buoy data at certain locations due to the substantial difference between the measured and ERA5 mean direction of wind-seas. The ERA5 dataset matches the measured mean wave direction when swell dominates i.e., during the southwest monsoon for the locations in the Arabian Sea and during post-monsoon season for the locations in the western Bay of Bengal.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"107 ","pages":"Article 101478"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026524000460","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Information on wave direction and height is an important input to the coastal engineers. The availability of measured data at every location in the ocean makes maritime operations smoother. However, the practical impossibility makes it to look for alternative datasets like ERA5 reanalysis data. In this study, we compare the significant wave height and mean wave direction in the ERA5 with the buoy-measured data available at the nearest locations in the coastal waters of India. Even though the ERA5 overestimates the measured significant wave heights at certain instances, they both are in good agreement at most of the locations. The correlation coefficient varies from 0.82 to 0.99, with the RMSE falling between 0.15 and 0.31 m. However, the ERA5 wave direction deviates significantly from the measured buoy data at certain locations due to the substantial difference between the measured and ERA5 mean direction of wind-seas. The ERA5 dataset matches the measured mean wave direction when swell dominates i.e., during the southwest monsoon for the locations in the Arabian Sea and during post-monsoon season for the locations in the western Bay of Bengal.
期刊介绍:
Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate.
Authors are invited to submit articles, short contributions or scholarly reviews in the following areas:
•Dynamic meteorology
•Physical oceanography
•Geophysical fluid dynamics
•Climate variability and climate change
•Atmosphere-ocean-biosphere-cryosphere interactions
•Prediction and predictability
•Scale interactions
Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.