Upper level and cross hierarchical regulation of predominantly expressed phenolic genes in maize

IF 5.4 Q1 PLANT SCIENCES Current Plant Biology Pub Date : 2024-06-22 DOI:10.1016/j.cpb.2024.100364
Ankita Abnave , Jerrin John , Erich Grotewold , Andrea I. Doseff , John Gray
{"title":"Upper level and cross hierarchical regulation of predominantly expressed phenolic genes in maize","authors":"Ankita Abnave ,&nbsp;Jerrin John ,&nbsp;Erich Grotewold ,&nbsp;Andrea I. Doseff ,&nbsp;John Gray","doi":"10.1016/j.cpb.2024.100364","DOIUrl":null,"url":null,"abstract":"<div><p>There is strong interest in deciphering the gene regulatory networks (GRNs) that govern plant specialized metabolism to assist in plant breeding. Here, we investigated the GRN governing phenolic biosynthesis pathways from which ∼ 8000 secondary metabolites are derived in plants. Previously it was established that 19 predominantly expressed phenolic (PEP) genes in maize are sufficient to explain &gt;70 % of the metabolic flux through the core phenylpropanoid, monolignol, and flavonoid branches of this pathway. A yeast-1-hybrid (Y1H) gene centric screening approach was employed to discover upper level (tier 2, 3, and 4) regulators of maize PEP genes. These regulators were further examined by co-expression analyses, and a subset of protein-DNA interactions (PDIs) validated <em>in vivo</em> by ChIP-qPCR and luciferase reporter assays in maize protoplasts. This study reveals a comprehensive GRN composed of 429 PDIs that exhibits hubs with high connectivity and cross hierarchical regulation of PEP genes in different branches of the pathway. The core GRN includes TFs that are conserved in other plant species and that are implicated in phenolic gene regulation including ZmMYB40/53/100, ZmMADS9, and ZmWD40.1/PAC1. The GRN also includes conserved TFs (<em>e.g.,</em> ZmC3H9, ZmHB20/79, ZmNAC103/123, ZmMYB19/26, ZmMYBR87, ZmDOF3, ZmbZIP67, ZmTCP30, and ZmbHLH128) which indicate that maize PEP genes are developmentally regulated but also fall under the control of biotic and abiotic stress signals. Together, the maize PEP GRN provides a complex regulatory mechanism that has evolved to coordinately regulate many phenolic genes in response to multiple internal and external signals and can guide efforts aimed at manipulating phenolic levels in plants towards targeted breeding improvement.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221466282400046X/pdfft?md5=f9ef3deb515ceb8a8a2fb07e8054ad07&pid=1-s2.0-S221466282400046X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221466282400046X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

There is strong interest in deciphering the gene regulatory networks (GRNs) that govern plant specialized metabolism to assist in plant breeding. Here, we investigated the GRN governing phenolic biosynthesis pathways from which ∼ 8000 secondary metabolites are derived in plants. Previously it was established that 19 predominantly expressed phenolic (PEP) genes in maize are sufficient to explain >70 % of the metabolic flux through the core phenylpropanoid, monolignol, and flavonoid branches of this pathway. A yeast-1-hybrid (Y1H) gene centric screening approach was employed to discover upper level (tier 2, 3, and 4) regulators of maize PEP genes. These regulators were further examined by co-expression analyses, and a subset of protein-DNA interactions (PDIs) validated in vivo by ChIP-qPCR and luciferase reporter assays in maize protoplasts. This study reveals a comprehensive GRN composed of 429 PDIs that exhibits hubs with high connectivity and cross hierarchical regulation of PEP genes in different branches of the pathway. The core GRN includes TFs that are conserved in other plant species and that are implicated in phenolic gene regulation including ZmMYB40/53/100, ZmMADS9, and ZmWD40.1/PAC1. The GRN also includes conserved TFs (e.g., ZmC3H9, ZmHB20/79, ZmNAC103/123, ZmMYB19/26, ZmMYBR87, ZmDOF3, ZmbZIP67, ZmTCP30, and ZmbHLH128) which indicate that maize PEP genes are developmentally regulated but also fall under the control of biotic and abiotic stress signals. Together, the maize PEP GRN provides a complex regulatory mechanism that has evolved to coordinately regulate many phenolic genes in response to multiple internal and external signals and can guide efforts aimed at manipulating phenolic levels in plants towards targeted breeding improvement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
玉米中主要表达酚类基因的上层和跨层调控
人们对破译支配植物特殊代谢的基因调控网络(GRN)以帮助植物育种有着浓厚的兴趣。在这里,我们研究了支配酚类生物合成途径的基因调控网络。此前已确定,玉米中 19 个主要表达的酚类(PEP)基因足以解释该途径核心苯丙酚、单木质素和黄酮类分支中 70% 的代谢通量。采用酵母-1-杂交(Y1H)基因中心筛选方法发现了玉米 PEP 基因的上层(2、3 和 4 级)调控因子。通过共表达分析进一步研究了这些调控因子,并在玉米原生质体中通过 ChIP-qPCR 和荧光素酶报告实验验证了蛋白质-DNA 相互作用(PDI)的子集。这项研究揭示了一个由 429 个 PDIs 组成的综合性 GRN,该 GRN 显示了具有高度连接性的枢纽,并对通路不同分支中的 PEP 基因进行交叉分层调控。核心 GRN 包括在其他植物物种中保守的、与酚类基因调控有关的 TF,包括 ZmMYB40/53/100、ZmMADS9 和 ZmWD40.1/PAC1。GRN 还包括保守的 TF(如 ZmC3H9、ZmHB20/79、ZmNAC103/123、ZmMYB19/26、ZmMYBR87、ZmDOF3、ZmbZIP67、ZmTCP30 和 ZmbHLH128),这表明玉米 PEP 基因受发育调控,但也受生物和非生物胁迫信号的控制。总之,玉米 PEP GRN 提供了一个复杂的调控机制,该机制在进化过程中协调调控许多酚类基因以响应多种内部和外部信号,并可指导旨在操纵植物酚类水平的工作,从而实现有针对性的育种改良。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
期刊最新文献
Effect of biostimulants on the chemical profile of food crops under normal and abiotic stress conditions Sustainable nitrogen solutions: Cyanobacteria-powered plant biotechnology for conservation and metabolite production Metabolomic analyses during chayote (Sechium edule var. virens levis) seed germination under the influence of growth regulators Arabidopsis B-BOX DOMAIN PROTEIN14/15/16 form a feedback loop with ELONGATED HYPOCOTYL 5 and PHYTOCHROME-INTERACTING FACTORs to regulate hypocotyl elongation Genome-wide identification of TCP transcription factors and functional role of UrTCP4 in regulating terpenoid indole alkaloids biosynthesis in Uncaria rhynchophylla
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1