Hierarchical NiCo2O4 needle-like heterostructure arrays anchored on WO3 as high- performance asymmetric supercapacitors for energy storage applications

IF 3.8 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2024-06-22 DOI:10.1016/j.chphi.2024.100666
Siveswari A, Gowthami V
{"title":"Hierarchical NiCo2O4 needle-like heterostructure arrays anchored on WO3 as high- performance asymmetric supercapacitors for energy storage applications","authors":"Siveswari A,&nbsp;Gowthami V","doi":"10.1016/j.chphi.2024.100666","DOIUrl":null,"url":null,"abstract":"<div><p>The current work employs a novel approach to construct a composite nanostructure to improve the capacitive performance of a supercapacitor device. The work involved preparing cube-shaped WO<sub>3</sub> particles and depositing them onto the surface of NiCo<sub>2</sub>O<sub>4</sub> needles using a microwave technique. The structure of the composites enables efficient paths for ion transport and electron diffusion in supercapacitors. The hybrid composite electrode demonstrates a specific capacitance of 716 F <em>g</em><sup>−1</sup> at a current density of 5 Ag<sup>−1</sup>. The asymmetric capacitor device, which utilizes NiCo<sub>2</sub>O<sub>4</sub>@WO<sub>3</sub> as the positive electrode and AC as the negative electrode, exhibits an energy density of 48.57 Wh kg<sup>−1</sup> at a power density of 1120 W kg<sup>−1</sup>. In addition, the NiCo<sub>2</sub>O<sub>4</sub>@WO<sub>3</sub>//AC device has a favourable cycle life, maintaining 85.7 % of its capacitance retention after 10,000 cycles. The findings demonstrate the potential of NiCo<sub>2</sub>O<sub>4</sub>@WO<sub>3</sub>//AC to be used in the development of advanced hybrid electrodes for improved supercapacitors.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266702242400210X/pdfft?md5=beb29f1195cec3f1c016132d8080af8d&pid=1-s2.0-S266702242400210X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266702242400210X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The current work employs a novel approach to construct a composite nanostructure to improve the capacitive performance of a supercapacitor device. The work involved preparing cube-shaped WO3 particles and depositing them onto the surface of NiCo2O4 needles using a microwave technique. The structure of the composites enables efficient paths for ion transport and electron diffusion in supercapacitors. The hybrid composite electrode demonstrates a specific capacitance of 716 F g−1 at a current density of 5 Ag−1. The asymmetric capacitor device, which utilizes NiCo2O4@WO3 as the positive electrode and AC as the negative electrode, exhibits an energy density of 48.57 Wh kg−1 at a power density of 1120 W kg−1. In addition, the NiCo2O4@WO3//AC device has a favourable cycle life, maintaining 85.7 % of its capacitance retention after 10,000 cycles. The findings demonstrate the potential of NiCo2O4@WO3//AC to be used in the development of advanced hybrid electrodes for improved supercapacitors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锚定在 WO3 上的分层镍钴氧化物针状异质结构阵列作为高性能不对称超级电容器用于储能应用
目前的研究采用了一种新方法来构建复合纳米结构,以提高超级电容器装置的电容性能。这项工作包括制备立方体 WO3 颗粒,并利用微波技术将其沉积到 NiCo2O4 针表面。复合材料的结构为超级电容器中的离子传输和电子扩散提供了有效路径。在电流密度为 5 Ag-1 时,混合复合电极的比电容为 716 F g-1。以 NiCo2O4@WO3 为正极、交流电为负极的不对称电容器装置在功率密度为 1120 W kg-1 时的能量密度为 48.57 Wh kg-1。此外,NiCo2O4@WO3//AC 器件的循环寿命也很好,在 10,000 次循环后仍能保持 85.7% 的电容保持率。研究结果表明,NiCo2O4@WO3//AC 有潜力用于开发先进的混合电极,以改进超级电容器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
Magnetic driven particle migration in PES membrane for phenol adsorption study: Isotherm and kinetic model perspective 50 MeV Li- and 80 MeV Ni- ions induced modification in ZnO cauliflower like structure: Structural, optical and electrical studies Characterization of green-synthesized carbon quantum dots from spent coffee grounds for EDLC electrode applications Trapping light, revealing properties: Laser trapping as a powerful tool for photoluminescence spectroscopy Green synthesis of bimetallic Ag-ZnO nanocomposite using polyherbal extract for antibacterial and anti-inflammatory activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1