Current-Voltage (i-V) characteristics of electrolyte-supported (NiO-YSZ/NiO-SDC/ScSZ/LSCF-GDC/LSCF) solid oxide electrolysis cell during CO2/H2O co-electrolysis

IF 3.8 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2024-06-24 DOI:10.1016/j.chphi.2024.100670
Rahulkumar Shirasangi, Lakhanlal, Hari Prasad Dasari, M.B. Saidutta
{"title":"Current-Voltage (i-V) characteristics of electrolyte-supported (NiO-YSZ/NiO-SDC/ScSZ/LSCF-GDC/LSCF) solid oxide electrolysis cell during CO2/H2O co-electrolysis","authors":"Rahulkumar Shirasangi,&nbsp;Lakhanlal,&nbsp;Hari Prasad Dasari,&nbsp;M.B. Saidutta","doi":"10.1016/j.chphi.2024.100670","DOIUrl":null,"url":null,"abstract":"<div><p>Solid oxide electrolysis cells (SOECs) stabilize CO<sub>2</sub> emissions by converting CO<sub>2</sub>/H<sub>2</sub>O into synfuel. Current-Voltage (i-V) characteristics of an electrolyte-supported button cell (NiO-YSZ/NiO-SDC/ScSZ/LSCF-GDC/LSCF) were measured as a function of temperature, water vapor concentration, and CO<sub>2</sub> gas concentrations. The cell microstructure was characterized by the Field Emission Scanning Electron Microscope (FE-SEM). FE-SEM micrographs depict that the electrolyte layer is relatively dense, and porous fuel and air electrode layers are well adhered to the electrolyte. The i-V curves were obtained at a scan rate of 0.02 Vs<sup>−1</sup> from 0.3 to 1.5 V. Electrolysis current density increases as the temperature increases. SOEC performance increases, but SOFC performance decreases with increased water vapor concentration. Electrolysis current densities decrease as the CO<sub>2</sub> concentration increases. The i-V characteristics show only ohmic polarization under fuel-lean and fuel-rich conditions. At optimal conditions, current density values at 800 °C/1.5 V are -174, -187, and -195 mA cm<sup>−2</sup> for 5 %H<sub>2</sub>O, 30 %CO<sub>2</sub>, and 30 %CO<sub>2</sub>/5 %H<sub>2</sub>O co-electrolysis. At 800 °C, open-circuit voltage (OCV) values for H<sub>2</sub>O, CO<sub>2</sub>, and co-electrolysis are 0.906, 0.891, and 0.885 V, respectively. The electrolysis area-specific resistances (ASRs) give information on the reduction of CO<sub>2</sub> or H<sub>2</sub>O, forming CO or H<sub>2</sub>, respectively. At optimal conditions, ASR values are 3.43, 3.29, and 3.18 Ω cm<sup>2</sup> for H<sub>2</sub>O, CO<sub>2</sub>, and co-electrolysis, respectively. Co-electrolysis has a lower ASR value than pure H<sub>2</sub>O and CO<sub>2</sub> electrolysis, indicating that H<sub>2</sub>O and CO<sub>2</sub> are involved in the electrochemical processes.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002147/pdfft?md5=d00bbfa261dbd0b5f47c4b0175b4d674&pid=1-s2.0-S2667022424002147-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424002147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solid oxide electrolysis cells (SOECs) stabilize CO2 emissions by converting CO2/H2O into synfuel. Current-Voltage (i-V) characteristics of an electrolyte-supported button cell (NiO-YSZ/NiO-SDC/ScSZ/LSCF-GDC/LSCF) were measured as a function of temperature, water vapor concentration, and CO2 gas concentrations. The cell microstructure was characterized by the Field Emission Scanning Electron Microscope (FE-SEM). FE-SEM micrographs depict that the electrolyte layer is relatively dense, and porous fuel and air electrode layers are well adhered to the electrolyte. The i-V curves were obtained at a scan rate of 0.02 Vs−1 from 0.3 to 1.5 V. Electrolysis current density increases as the temperature increases. SOEC performance increases, but SOFC performance decreases with increased water vapor concentration. Electrolysis current densities decrease as the CO2 concentration increases. The i-V characteristics show only ohmic polarization under fuel-lean and fuel-rich conditions. At optimal conditions, current density values at 800 °C/1.5 V are -174, -187, and -195 mA cm−2 for 5 %H2O, 30 %CO2, and 30 %CO2/5 %H2O co-electrolysis. At 800 °C, open-circuit voltage (OCV) values for H2O, CO2, and co-electrolysis are 0.906, 0.891, and 0.885 V, respectively. The electrolysis area-specific resistances (ASRs) give information on the reduction of CO2 or H2O, forming CO or H2, respectively. At optimal conditions, ASR values are 3.43, 3.29, and 3.18 Ω cm2 for H2O, CO2, and co-electrolysis, respectively. Co-electrolysis has a lower ASR value than pure H2O and CO2 electrolysis, indicating that H2O and CO2 are involved in the electrochemical processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电解质支撑型(NiO-YSZ/NiO-SDC/ScSZ/LSCF-GDC/LSCF)固体氧化物电解槽在 CO2/H2O 共电解过程中的电流-电压 (i-V) 特性
固体氧化物电解池(SOEC)通过将 CO2/H2O 转化为合成燃料来稳定二氧化碳的排放。测量了电解质支持的扣式电池(NiO-YSZ/NiO-SDC/ScSZ/LSCF-GDC/LSCF)的电流电压(i-V)特性与温度、水蒸气浓度和二氧化碳气体浓度的函数关系。电池的微观结构由场发射扫描电子显微镜(FE-SEM)进行表征。FE-SEM 显微照片显示,电解质层相对致密,多孔燃料层和空气电极层与电解质附着良好。在 0.02 Vs-1 的扫描速率下,获得了 0.3 至 1.5 V 的 i-V 曲线。电解电流密度随温度升高而增加。SOEC 性能随着水蒸气浓度的增加而提高,但 SOFC 性能则随着水蒸气浓度的增加而降低。电解电流密度随着二氧化碳浓度的增加而降低。在燃料贫乏和燃料丰富的条件下,i-V 特性只显示出欧姆极化。在最佳条件下,5 %H2O、30 %CO2 和 30 %CO2/5 %H2O 共电解在 800 °C/1.5 V 时的电流密度值分别为 -174、-187 和 -195 mA cm-2。800 °C 时,H2O、CO2 和共电解的开路电压 (OCV) 值分别为 0.906、0.891 和 0.885 V。电解区域特异电阻(ASR)提供了 CO2 或 H2O 还原成 CO 或 H2 的信息。在最佳条件下,H2O、CO2 和共电解的 ASR 值分别为 3.43、3.29 和 3.18 Ω cm2。共电解的 ASR 值低于纯 H2O 和 CO2 电解,表明 H2O 和 CO2 参与了电化学过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
Magnetic driven particle migration in PES membrane for phenol adsorption study: Isotherm and kinetic model perspective 50 MeV Li- and 80 MeV Ni- ions induced modification in ZnO cauliflower like structure: Structural, optical and electrical studies Characterization of green-synthesized carbon quantum dots from spent coffee grounds for EDLC electrode applications Trapping light, revealing properties: Laser trapping as a powerful tool for photoluminescence spectroscopy Green synthesis of bimetallic Ag-ZnO nanocomposite using polyherbal extract for antibacterial and anti-inflammatory activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1