Green biomass-derived hierarchically porous non-activated carbon from carob waste for high-performance lithium-sulfur batteries

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Materials Today Sustainability Pub Date : 2024-06-28 DOI:10.1016/j.mtsust.2024.100895
Otmane Zoubir , Abdelfettah Lallaoui , Zineb Edfouf , Alvaro Caballero , Alvaro Y. Tesio
{"title":"Green biomass-derived hierarchically porous non-activated carbon from carob waste for high-performance lithium-sulfur batteries","authors":"Otmane Zoubir ,&nbsp;Abdelfettah Lallaoui ,&nbsp;Zineb Edfouf ,&nbsp;Alvaro Caballero ,&nbsp;Alvaro Y. Tesio","doi":"10.1016/j.mtsust.2024.100895","DOIUrl":null,"url":null,"abstract":"<div><p>To expedite the development of lithium-sulfur (Li–S) battery technology, it is necessary to address the inherent technological hurdles surrounding sulfur-based cathodes, including mitigating the shuttle effect and enhancing the electrical conductivity of sulfur. The use of biomass-derived carbonaceous materials offers a promising avenue to alleviate these challenges and help reduce the carbon footprint associated with battery technologies. Herein, we report the green synthesis of carob-derived carbonaceous material without additional physical/chemical activation steps, making the process sustainable, affordable, and eco-friendly. The obtained carob-derived carbon (CC) offers a hierarchical micro/meso/macroporous structure with a high surface area of 633 m<sup>2</sup> g<sup>−1</sup>. The electrochemical performance with a sulfur content of 70% (CC@S70) in the composite and a sulfur mass loading of 1 mg cm<sup>−2</sup> delivers an initial discharge capacity of 1405 mAh g<sup>−1</sup>, reducing to 798 mAh g<sup>−1</sup> after 260 cycles. Increasing the sulfur content to 90% in the cathode (CC@S90) yields a high capacity in Li–S cells, reaching a discharge capacity of 937 mAh g<sup>−1</sup> with a sulfur loading of 2 mg cm<sup>−2</sup> at 0.3C (1C = 1675 mA g<sup>−1</sup>) after 100 cycles. The improved performance can be attributed to the well-preserved interconnected pores within the carbon material, serving as an efficient framework to accommodate high sulfur content.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724002318","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To expedite the development of lithium-sulfur (Li–S) battery technology, it is necessary to address the inherent technological hurdles surrounding sulfur-based cathodes, including mitigating the shuttle effect and enhancing the electrical conductivity of sulfur. The use of biomass-derived carbonaceous materials offers a promising avenue to alleviate these challenges and help reduce the carbon footprint associated with battery technologies. Herein, we report the green synthesis of carob-derived carbonaceous material without additional physical/chemical activation steps, making the process sustainable, affordable, and eco-friendly. The obtained carob-derived carbon (CC) offers a hierarchical micro/meso/macroporous structure with a high surface area of 633 m2 g−1. The electrochemical performance with a sulfur content of 70% (CC@S70) in the composite and a sulfur mass loading of 1 mg cm−2 delivers an initial discharge capacity of 1405 mAh g−1, reducing to 798 mAh g−1 after 260 cycles. Increasing the sulfur content to 90% in the cathode (CC@S90) yields a high capacity in Li–S cells, reaching a discharge capacity of 937 mAh g−1 with a sulfur loading of 2 mg cm−2 at 0.3C (1C = 1675 mA g−1) after 100 cycles. The improved performance can be attributed to the well-preserved interconnected pores within the carbon material, serving as an efficient framework to accommodate high sulfur content.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从角豆树废弃物中提取绿色生物质层状多孔非活性碳,用于高性能锂硫电池
为了加快锂硫(Li-S)电池技术的发展,有必要解决硫基阴极固有的技术障碍,包括减轻穿梭效应和提高硫的导电性。使用从生物质中提取的碳质材料为缓解这些挑战提供了一条大有可为的途径,有助于减少与电池技术相关的碳足迹。在此,我们报告了角豆树衍生碳质材料的绿色合成方法,该方法无需额外的物理/化学活化步骤,因此具有可持续性、经济性和生态友好性。获得的角豆树衍生碳(CC)具有分层微/介/大孔结构,表面积高达 633 m2 g-1。复合材料中硫含量为 70% (CC@S70)、硫质量负载为 1 mg cm-2 时,其电化学性能的初始放电容量为 1405 mAh g-1,260 个循环后降至 798 mAh g-1。将阴极中的硫含量提高到 90%(CC@S90)可产生较高的锂-S 电池容量,在 0.3C 条件下(1C = 1675 mA g-1),硫含量为 2 mg cm-2 时,100 个循环后的放电容量为 937 mAh g-1。性能的提高可归功于碳材料内部保存完好的互连孔隙,可作为容纳高硫含量的有效框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
期刊最新文献
Graphene oxide-containing chitosan@HKUST-1 beads with increased chemical stability for CO2 capture Novel MoS2-based heterojunction as an efficient and magnetically retrievable piezo-photocatalyst for diclofenac sodium degradation Enhanced dopamine detection using Ti3C2Tx/rGO/Pt ternary composite synthesized via microwave-assisted hydrothermal method Layered silicate PLS-3 with PREFER structure supported Pd nanoparticles: A recyclable catalyst for the synthesis of furfuryl ethyl ether The deformation mechanism of low symmetric Ti–Pt intermetallic compounds containing high density of planar defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1