Exploring applications of Computational Design techniques and design for manufacturability for costs reduction of prefabricated timber-based façades: The ‘LegnAttivo’ design prototype

IF 6.2 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Developments in the Built Environment Pub Date : 2024-06-22 DOI:10.1016/j.dibe.2024.100489
Gabriele Pasetti Monizza , Ilaria Di Blasio , Dominik T. Matt
{"title":"Exploring applications of Computational Design techniques and design for manufacturability for costs reduction of prefabricated timber-based façades: The ‘LegnAttivo’ design prototype","authors":"Gabriele Pasetti Monizza ,&nbsp;Ilaria Di Blasio ,&nbsp;Dominik T. Matt","doi":"10.1016/j.dibe.2024.100489","DOIUrl":null,"url":null,"abstract":"<div><p>Several research initiatives across the European Union investigated the application of off-site prefabrication strategies for energy refurbishment of buildings. Although the results obtained, none of these projects offer a solution for reducing the overall cost.</p><p>This paper presents the results of the ‘LegnAttivo’ project, an applied research initiative that investigates applications of Mass Customization and Design for Manufacturability to reduce the cost of prefabricated timber-based façades for energy refurbishment. Applying a Design Science Research approach, the research develops a design prototype of timber-based façade elements for the energy refurbishment of the Italian building stock. Relying on a single case study which is a starting point for future generalizations and extensions of the method, results highlight that applications of Design for Manufacturability combined with Computational Design techniques provide effective and efficient solutions, even under extremely customized requirements, and bring to considerable saves, aligned with the ones measured by the scientific community.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"19 ","pages":"Article 100489"},"PeriodicalIF":6.2000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001704/pdfft?md5=85e5f8490b9a3f233878e15b26ad8179&pid=1-s2.0-S2666165924001704-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924001704","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Several research initiatives across the European Union investigated the application of off-site prefabrication strategies for energy refurbishment of buildings. Although the results obtained, none of these projects offer a solution for reducing the overall cost.

This paper presents the results of the ‘LegnAttivo’ project, an applied research initiative that investigates applications of Mass Customization and Design for Manufacturability to reduce the cost of prefabricated timber-based façades for energy refurbishment. Applying a Design Science Research approach, the research develops a design prototype of timber-based façade elements for the energy refurbishment of the Italian building stock. Relying on a single case study which is a starting point for future generalizations and extensions of the method, results highlight that applications of Design for Manufacturability combined with Computational Design techniques provide effective and efficient solutions, even under extremely customized requirements, and bring to considerable saves, aligned with the ones measured by the scientific community.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索计算设计技术和可制造性设计在降低预制木质外墙成本方面的应用:LegnAttivo" 设计原型
欧盟的几项研究计划都对应用场外预制战略进行了调查,以便对建筑物进行能源翻新。本文介绍了 "LegnAttivo "项目的成果,该项目是一项应用研究计划,旨在调查大规模定制和可制造性设计的应用情况,以降低用于能源翻新的预制木材外墙的成本。该研究采用设计科学研究方法,为意大利建筑的节能翻新开发了木质外墙元件设计原型。研究结果表明,可制造性设计与计算设计技术相结合的应用,即使在极端个性化的要求下,也能提供有效和高效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
1.20%
发文量
31
审稿时长
22 days
期刊介绍: Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.
期刊最新文献
Study on the pore structure of eco-regenerated mortar using corn cob based on nuclear magnetic resonance Innovative design and sensing performance of a novel large-strain sensor for prestressed FRP plates Effects of superabsorbent polymer and natural zeolite on shrinkage, mechanical properties, and porosity in ultra-high performance concretes Explainable machine learning model for load-deformation correlation in long-span suspension bridges using XGBoost-SHAP Extending Information Delivery Specifications for digital building permit requirements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1