Hanbin Luo , Jianxin Wu , Jiajing Liu , Maxwell Fordjour Antwi-Afari
{"title":"Large language model-based code generation for the control of construction assembly robots: A hierarchical generation approach","authors":"Hanbin Luo , Jianxin Wu , Jiajing Liu , Maxwell Fordjour Antwi-Afari","doi":"10.1016/j.dibe.2024.100488","DOIUrl":null,"url":null,"abstract":"<div><p>Offline programming (OLP) is a mainstream approach for controlling assembly robots at construction sites. However, existing methods are tailored to specific assembly tasks and workflows, and thus lack flexibility. Additionally, the emerging large language model (LLM)-based OLP cannot effectively handle the code logic of robot programming. Thus, this paper addresses the question: <em>How can robot control programs be generated effectively and accurately for diverse construction assembly tasks using LLM techniques?</em> This paper describes a closed user-on-the-loop control framework for construction assembly robots based on LLM techniques. A hierarchical strategy to generate robot control programs is proposed to logically integrate code generation at high and low levels. Additionally, customized application programming interfaces and a chain of action are combined to enhance the LLM's understanding of assembly action logic. An assembly task set was designed to evaluate the feasibility and reliability of the proposed approach. The results show that the proposed approach (1) is widely applicable to diverse assembly tasks, and (2) can improve the quality of the generated code by decreasing the number of errors. Our approach facilitates the automation of construction assembly tasks by simplifying the robot control process.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"19 ","pages":"Article 100488"},"PeriodicalIF":6.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001698/pdfft?md5=4c5bb6230dbce18398eb68e7ab22159c&pid=1-s2.0-S2666165924001698-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924001698","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Offline programming (OLP) is a mainstream approach for controlling assembly robots at construction sites. However, existing methods are tailored to specific assembly tasks and workflows, and thus lack flexibility. Additionally, the emerging large language model (LLM)-based OLP cannot effectively handle the code logic of robot programming. Thus, this paper addresses the question: How can robot control programs be generated effectively and accurately for diverse construction assembly tasks using LLM techniques? This paper describes a closed user-on-the-loop control framework for construction assembly robots based on LLM techniques. A hierarchical strategy to generate robot control programs is proposed to logically integrate code generation at high and low levels. Additionally, customized application programming interfaces and a chain of action are combined to enhance the LLM's understanding of assembly action logic. An assembly task set was designed to evaluate the feasibility and reliability of the proposed approach. The results show that the proposed approach (1) is widely applicable to diverse assembly tasks, and (2) can improve the quality of the generated code by decreasing the number of errors. Our approach facilitates the automation of construction assembly tasks by simplifying the robot control process.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.