Accuracy and performance evaluation of low density internal and external flow predictions using CFD and DSMC

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2024-06-18 DOI:10.1016/j.compfluid.2024.106346
Surya Kiran Peravali , Vahid Jafari , Amit K. Samanta , Jochen Küpper , Muhamed Amin , Philipp Neumann , Michael Breuer
{"title":"Accuracy and performance evaluation of low density internal and external flow predictions using CFD and DSMC","authors":"Surya Kiran Peravali ,&nbsp;Vahid Jafari ,&nbsp;Amit K. Samanta ,&nbsp;Jochen Küpper ,&nbsp;Muhamed Amin ,&nbsp;Philipp Neumann ,&nbsp;Michael Breuer","doi":"10.1016/j.compfluid.2024.106346","DOIUrl":null,"url":null,"abstract":"<div><p>The Direct Simulation Monte Carlo (DSMC) method was widely used to simulate low density gas flows with large Knudsen numbers. However, DSMC encounters limitations in the regime of lower Knudsen numbers (<span><math><mrow><mi>Kn</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>05</mn></mrow></math></span>). In such cases, approaches from classical computational fluid dynamics (CFD) relying on the continuum assumption are preferred, offering accurate solutions at acceptable computational costs. In experiments aimed at imaging aerosolized nanoparticles <em>in vacuo</em> a wide range of Knudsen numbers occur, which motivated the present study on the analysis of the advantages and drawbacks of DSMC and CFD simulations of rarefied flows in terms of accuracy and computational effort. Furthermore, the potential of hybrid methods is evaluated. For this purpose, DSMC and CFD simulations of the flow inside a convergent–divergent nozzle (internal expanding flow) and the flow around a conical body (external shock generating flow) were carried out. CFD simulations utilize the software OpenFOAM and the DSMC solution is obtained using the software SPARTA. The results of these simulation techniques are evaluated by comparing them with experimental data (1), evaluating the time-to-solution (2) and the energy consumption (3), and assessing the feasibility of hybrid CFD-DSMC approaches (4).</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045793024001786/pdfft?md5=52837a05ec52af2347a2f62d733bd3dc&pid=1-s2.0-S0045793024001786-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024001786","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Direct Simulation Monte Carlo (DSMC) method was widely used to simulate low density gas flows with large Knudsen numbers. However, DSMC encounters limitations in the regime of lower Knudsen numbers (Kn<0.05). In such cases, approaches from classical computational fluid dynamics (CFD) relying on the continuum assumption are preferred, offering accurate solutions at acceptable computational costs. In experiments aimed at imaging aerosolized nanoparticles in vacuo a wide range of Knudsen numbers occur, which motivated the present study on the analysis of the advantages and drawbacks of DSMC and CFD simulations of rarefied flows in terms of accuracy and computational effort. Furthermore, the potential of hybrid methods is evaluated. For this purpose, DSMC and CFD simulations of the flow inside a convergent–divergent nozzle (internal expanding flow) and the flow around a conical body (external shock generating flow) were carried out. CFD simulations utilize the software OpenFOAM and the DSMC solution is obtained using the software SPARTA. The results of these simulation techniques are evaluated by comparing them with experimental data (1), evaluating the time-to-solution (2) and the energy consumption (3), and assessing the feasibility of hybrid CFD-DSMC approaches (4).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 CFD 和 DSMC 对低密度内部和外部流动预测的精度和性能进行评估
直接模拟蒙特卡罗(DSMC)方法被广泛用于模拟具有较大克努森数的低密度气体流。然而,DSMC 在较低的 Knudsen 数(Kn<0.05)条件下遇到了限制。在这种情况下,依靠连续体假设的经典计算流体动力学(CFD)方法更受青睐,它能以可接受的计算成本提供精确的解决方案。在旨在对真空中的气溶胶纳米粒子进行成像的实验中,出现了很大范围的克努森数,这促使本研究对稀薄流的 DSMC 和 CFD 模拟在精度和计算量方面的优缺点进行分析。此外,还对混合方法的潜力进行了评估。为此,对汇聚-发散喷嘴内部的流动(内部膨胀流)和锥体周围的流动(外部冲击产生流)进行了 DSMC 和 CFD 模拟。CFD 模拟使用 OpenFOAM 软件,DSMC 仿真使用 SPARTA 软件。通过与实验数据比较(1)、评估求解时间(2)和能耗(3)以及评估 CFD-DSMC 混合方法的可行性(4),对这些模拟技术的结果进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
Editorial Board Lattice Boltzmann simulation of flow boiling heat transfer process in a horizontal microchannel with rectangular cavities Exploring the potential of TENO and WENO schemes for simulating under-resolved turbulent flows in the atmosphere using Euler equations A Poisson-bracket scheme for nonlinear shallow-water sloshing in an oscillating tank with irregular bottom surface Numerical simulation of melt flow and heat transfer in casting filling process based on SPH
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1