Mitigation of Shock wave boundary layer interaction using surface arc plasma energy actuators: A computational study

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2025-02-10 DOI:10.1016/j.compfluid.2025.106569
Deepu Dinesan, Bibin John
{"title":"Mitigation of Shock wave boundary layer interaction using surface arc plasma energy actuators: A computational study","authors":"Deepu Dinesan,&nbsp;Bibin John","doi":"10.1016/j.compfluid.2025.106569","DOIUrl":null,"url":null,"abstract":"<div><div>The control of shock wave boundary layer interaction (SWBLI) by means of surface arc plasma actuator (SAPA) is the focus of current work. The primary objective is to explore the potential of short-duration pulse energy deposition in mitigating the separation zone that develops ahead of a cylindrical blunt body placed in a supersonic Mach 2.5 field. The research delves into the fundamental physics of BW generation and propagation, both in quasi-static fields and supersonic flows. Additionally, it elucidates how BWs interact with the separated shear layer, ultimately reducing the size of the separation zone. The numerical framework implemented for the replication of real time surface arc plasma energy addition is validated against the literature reported experimental and analytical data. Additional parametric studies demonstrating the effect of plasma actuation duration, energy magnitude/pulse and number of SAPAs are presented. Notably, the findings reveal that an array of SAPAs with five energy pulse locations can minimize the separation size to just 56% of the base flow, with one time actuation of SAPAs by depositing <span><math><mrow><mn>240</mn><mi>m</mi><mi>J</mi></mrow></math></span> of energy.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"290 ","pages":"Article 106569"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025000295","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The control of shock wave boundary layer interaction (SWBLI) by means of surface arc plasma actuator (SAPA) is the focus of current work. The primary objective is to explore the potential of short-duration pulse energy deposition in mitigating the separation zone that develops ahead of a cylindrical blunt body placed in a supersonic Mach 2.5 field. The research delves into the fundamental physics of BW generation and propagation, both in quasi-static fields and supersonic flows. Additionally, it elucidates how BWs interact with the separated shear layer, ultimately reducing the size of the separation zone. The numerical framework implemented for the replication of real time surface arc plasma energy addition is validated against the literature reported experimental and analytical data. Additional parametric studies demonstrating the effect of plasma actuation duration, energy magnitude/pulse and number of SAPAs are presented. Notably, the findings reveal that an array of SAPAs with five energy pulse locations can minimize the separation size to just 56% of the base flow, with one time actuation of SAPAs by depositing 240mJ of energy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
A hybrid immersed-boundary/front-tracking method for interface-resolved simulation of droplet evaporation Non-dimensional meshing criterion of mean flow field discretization for RANS and LES Mitigation of Shock wave boundary layer interaction using surface arc plasma energy actuators: A computational study Goal-oriented adaptive sampling for projection-based reduced-order models Improved particle level set method with higher-order kernel function correction: Enhancing accuracy and conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1