A voting-based ensemble classifier to predict phases and crystal structures of high entropy alloys through thermodynamic, electronic, and configurational parameters

Pritam Mandal , Amitava Choudhury , Amitava Basu Mallick , Manojit Ghosh
{"title":"A voting-based ensemble classifier to predict phases and crystal structures of high entropy alloys through thermodynamic, electronic, and configurational parameters","authors":"Pritam Mandal ,&nbsp;Amitava Choudhury ,&nbsp;Amitava Basu Mallick ,&nbsp;Manojit Ghosh","doi":"10.1016/j.jalmes.2024.100087","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to predict the various phases present in high entropy alloys (HEAs) and consequently classify their crystal structure employing multiple machine learning (ML) algorithms utilizing five thermodynamic, electronic and configurational parameters which are considered to be essential for the formation of HEA phases. The properties of a high entropy alloy can eventually be traced through accurate phase and crystal structure prediction, which is essential for selecting the ideal elements for designs. Twelve distinct ML algorithms were executed to predict the phases of HEAs, adopting an experimental database of 322 different HEAs, involving 33 amorphous (AM), 31 intermetallics (IM), and 258 solid solutions (SS) phases. Among the twelve ML models, Cat Boost Classifier displayed the optimum accuracy of 98.06 % for phase predictions. Further, crystal structure classification of the SS phase (body-centered cubic- BCC, face-centered cubic- FCC, and mixed body-centered and face-centered cubic- BCC+FCC) has endeavoured for better microstructure evolution using a different database containing of 194 additional HEAs data with 61 FCC, 76 BCC, and 57 BCC+FCC crystal structures and in comparison to the other models tested, the Gradient Boosting Classifier evolved with the highest accuracy of 86.90 %. An ensemble classifier was also introduced to improve the performance of the ML models, resulting in an accuracy increase to 98.70 % and 86.95 % for phase and crystal structure predictions, respectively. Additionally, the influence of parameters on model accuracy was determined independently.</p></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"7 ","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949917824000348/pdfft?md5=684ea4f76902c307302a9b5333cc9163&pid=1-s2.0-S2949917824000348-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949917824000348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to predict the various phases present in high entropy alloys (HEAs) and consequently classify their crystal structure employing multiple machine learning (ML) algorithms utilizing five thermodynamic, electronic and configurational parameters which are considered to be essential for the formation of HEA phases. The properties of a high entropy alloy can eventually be traced through accurate phase and crystal structure prediction, which is essential for selecting the ideal elements for designs. Twelve distinct ML algorithms were executed to predict the phases of HEAs, adopting an experimental database of 322 different HEAs, involving 33 amorphous (AM), 31 intermetallics (IM), and 258 solid solutions (SS) phases. Among the twelve ML models, Cat Boost Classifier displayed the optimum accuracy of 98.06 % for phase predictions. Further, crystal structure classification of the SS phase (body-centered cubic- BCC, face-centered cubic- FCC, and mixed body-centered and face-centered cubic- BCC+FCC) has endeavoured for better microstructure evolution using a different database containing of 194 additional HEAs data with 61 FCC, 76 BCC, and 57 BCC+FCC crystal structures and in comparison to the other models tested, the Gradient Boosting Classifier evolved with the highest accuracy of 86.90 %. An ensemble classifier was also introduced to improve the performance of the ML models, resulting in an accuracy increase to 98.70 % and 86.95 % for phase and crystal structure predictions, respectively. Additionally, the influence of parameters on model accuracy was determined independently.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于投票的集合分类器,通过热力学、电子学和构型参数预测高熵合金的相位和晶体结构
本研究旨在预测高熵合金(HEAs)中存在的各种相,并采用多种机器学习(ML)算法,利用五个热力学、电子和构型参数对其晶体结构进行分类,这些参数被认为是形成高熵合金相的基本要素。通过精确的相和晶体结构预测,最终可追踪高熵合金的特性,这对选择理想的设计元素至关重要。采用包含 322 种不同高熵合金的实验数据库,执行了 12 种不同的 ML 算法来预测高熵合金的相,其中包括 33 种非晶相 (AM)、31 种金属间化合物相 (IM) 和 258 种固溶体相 (SS)。在 12 个 ML 模型中,Cat Boost 分类器的相预测准确率最高,达到 98.06%。此外,SS 相的晶体结构分类(体心立方- BCC、面心立方- FCC 以及体心和面心立方混合- BCC+FCC)使用了一个不同的数据库,该数据库包含 194 个额外的 HEAs 数据,其中有 61 个 FCC、76 个 BCC 和 57 个 BCC+FCC 晶体结构,与其他测试模型相比,梯度提升分类器的准确率最高,达到 86.90%。为了提高 ML 模型的性能,还引入了集合分类器,结果相和晶体结构预测的准确率分别提高到 98.70 % 和 86.95 %。此外,还独立确定了参数对模型准确性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Metallurgical assessment of Al-Zr-Y alloys for laser-based processing Insights into magnesium alloy significance Metallurgical and mechanical properties of failed railway screw coupling in screw part Corrosion and wear study of medium entropy Pb-Sn-Cu alloy for coating application Impact of friction stir welding on the mechanical and microstructural properties of austempered ductile iron and mild steel joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1