Adaptive fixed-time fault-tolerant tracking control for rotary steerable drilling tool systems

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Control Engineering Practice Pub Date : 2024-06-25 DOI:10.1016/j.conengprac.2024.106004
Ming Gao , Wei Cheng , Yongli Wei , Li Sheng , Donghua Zhou
{"title":"Adaptive fixed-time fault-tolerant tracking control for rotary steerable drilling tool systems","authors":"Ming Gao ,&nbsp;Wei Cheng ,&nbsp;Yongli Wei ,&nbsp;Li Sheng ,&nbsp;Donghua Zhou","doi":"10.1016/j.conengprac.2024.106004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the problem of adaptive fixed-time fault-tolerant tracking control is investigated for rotary steerable drilling tool systems (RSDTSs). Markov jump system (MJS) is used to describe the RSDTS with varying parameters which are induced by the changing environment. By employing the smooth projection operator technique, adaptive laws are established to estimate the faults. Based on the fault compensation strategy, a new adaptive fixed-time fault-tolerant tracking control scheme is proposed to ensure that the RSDTS is globally stochastically practically fixed-time stable. In addition, to reduce the computational burden in the backstepping framework, the derivatives of the virtual control are directly derived using command filters. Finally, the experiment performed on the rotary steerable drilling tool systems prototype is exploited to demonstrate the feasibility and effectiveness of the proposed method.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124001643","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the problem of adaptive fixed-time fault-tolerant tracking control is investigated for rotary steerable drilling tool systems (RSDTSs). Markov jump system (MJS) is used to describe the RSDTS with varying parameters which are induced by the changing environment. By employing the smooth projection operator technique, adaptive laws are established to estimate the faults. Based on the fault compensation strategy, a new adaptive fixed-time fault-tolerant tracking control scheme is proposed to ensure that the RSDTS is globally stochastically practically fixed-time stable. In addition, to reduce the computational burden in the backstepping framework, the derivatives of the virtual control are directly derived using command filters. Finally, the experiment performed on the rotary steerable drilling tool systems prototype is exploited to demonstrate the feasibility and effectiveness of the proposed method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋转可操纵钻具系统的自适应固定时间容错跟踪控制
本文研究了旋转可操纵钻具系统(RSDTS)的自适应固定时间容错跟踪控制问题。马尔可夫跃迁系统(MJS)用于描述因环境变化而导致参数变化的 RSDTS。通过采用平滑投影算子技术,建立了自适应法则来估计故障。基于故障补偿策略,提出了一种新的自适应固定时间容错跟踪控制方案,以确保 RSDTS 具有全局随机实际固定时间稳定性。此外,为了减轻反步态框架的计算负担,使用指令滤波器直接导出虚拟控制的导数。最后,在旋转可操纵钻具系统原型上进行的实验证明了所提方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
期刊最新文献
Signal-Interpreted Coloured Petri Nets: A modelling tool for rapid prototyping in feedback-based control of discrete event systems Output consensus for interconnected heterogeneous systems via a combined model predictive control and integral sliding mode control with application to CSTRs HFTL-KD: A new heterogeneous federated transfer learning approach for degradation trajectory prediction in large-scale decentralized systems Multi-agent active multi-target search with intermittent measurements Closed-loop identification of a MSW grate incinerator using Bayesian Optimization for selecting model inputs and structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1