{"title":"HFTL-KD: A new heterogeneous federated transfer learning approach for degradation trajectory prediction in large-scale decentralized systems","authors":"Shixiang Lu, Zhi-Wei Gao, Yuanhong Liu","doi":"10.1016/j.conengprac.2024.106098","DOIUrl":null,"url":null,"abstract":"<div><p>Restrictions arising from the limited training data and privacy preservation make large-scale lithium-ion battery degradation trajectory prediction challenging. In this study, a novel heterogeneous federated transfer learning with knowledge distillation approach is proposed for lithium-ion battery lifetime prediction with scarce training data and privacy concerns. The approach enables each device in large-scale decentralized system to not only own its private data, but also a unique network designed based on its resource constraints. Specifically, the central server first designs its unique network according to the resource constraints of each device, and trains the network on publicly available data with entire degradation cycles, thus avoiding the high cost of collecting abundant degradation cycles. Then, the trained model is transferred to each device for collaborative training, in which the knowledge of heterogeneous models extracted by knowledge distillation is used for communication between the isolated devices, rather than the parameters in conventional federated learning. Extensive real-world datasets are leveraged to verify the effectiveness of the proposed approach. The comparison results demonstrate that the proposed method outperforms seven benchmarks. An ablation study indicates that the approach can achieve satisfactory battery residual life prediction while preserving privacy.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"153 ","pages":"Article 106098"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002570","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Restrictions arising from the limited training data and privacy preservation make large-scale lithium-ion battery degradation trajectory prediction challenging. In this study, a novel heterogeneous federated transfer learning with knowledge distillation approach is proposed for lithium-ion battery lifetime prediction with scarce training data and privacy concerns. The approach enables each device in large-scale decentralized system to not only own its private data, but also a unique network designed based on its resource constraints. Specifically, the central server first designs its unique network according to the resource constraints of each device, and trains the network on publicly available data with entire degradation cycles, thus avoiding the high cost of collecting abundant degradation cycles. Then, the trained model is transferred to each device for collaborative training, in which the knowledge of heterogeneous models extracted by knowledge distillation is used for communication between the isolated devices, rather than the parameters in conventional federated learning. Extensive real-world datasets are leveraged to verify the effectiveness of the proposed approach. The comparison results demonstrate that the proposed method outperforms seven benchmarks. An ablation study indicates that the approach can achieve satisfactory battery residual life prediction while preserving privacy.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.