Shuaihu Wang , Bingxin Huang , Simon C.K. Chan , Victor T.C. Tsang , Terence T.W. Wong
{"title":"Tri-modality in vivo imaging for tumor detection with combined ultrasound, photoacoustic, and photoacoustic elastography","authors":"Shuaihu Wang , Bingxin Huang , Simon C.K. Chan , Victor T.C. Tsang , Terence T.W. Wong","doi":"10.1016/j.pacs.2024.100630","DOIUrl":null,"url":null,"abstract":"<div><p>A comprehensive understanding of a tumor is required for accurate diagnosis and effective treatment. However, currently, there is no single imaging modality that can provide sufficient information. Photoacoustic (PA) imaging is a hybrid imaging technique with high spatial resolution and detection sensitivity, which can be combined with ultrasound (US) imaging to provide both optical and acoustic contrast. Elastography can noninvasively map the elasticity distribution of biological tissue, which reflects pathological conditions. In this study, we incorporated PA elastography into a commercial US/PA imaging system to develop a tri-modality imaging system, which has been tested for tumor detection using four mice with different physiological conditions. The results show that this tri-modality imaging system can provide complementary information on acoustic, optical, and mechanical properties. The enabled visualization and dimension estimation of tumors can lead to a more comprehensive tissue characterization for diagnosis and treatment.</p></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"38 ","pages":"Article 100630"},"PeriodicalIF":7.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213597924000478/pdfft?md5=8353b1647742fc669e80b9b350dfb7ec&pid=1-s2.0-S2213597924000478-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000478","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A comprehensive understanding of a tumor is required for accurate diagnosis and effective treatment. However, currently, there is no single imaging modality that can provide sufficient information. Photoacoustic (PA) imaging is a hybrid imaging technique with high spatial resolution and detection sensitivity, which can be combined with ultrasound (US) imaging to provide both optical and acoustic contrast. Elastography can noninvasively map the elasticity distribution of biological tissue, which reflects pathological conditions. In this study, we incorporated PA elastography into a commercial US/PA imaging system to develop a tri-modality imaging system, which has been tested for tumor detection using four mice with different physiological conditions. The results show that this tri-modality imaging system can provide complementary information on acoustic, optical, and mechanical properties. The enabled visualization and dimension estimation of tumors can lead to a more comprehensive tissue characterization for diagnosis and treatment.
准确诊断和有效治疗需要对肿瘤有全面的了解。然而,目前还没有一种成像模式能提供足够的信息。光声(PA)成像是一种具有高空间分辨率和检测灵敏度的混合成像技术,可与超声(US)成像相结合,提供光学和声学对比。弹性成像可以无创绘制生物组织的弹性分布图,反映病理状况。在这项研究中,我们将 PA 弹性成像技术融入到商用 US/PA 成像系统中,开发出一种三模态成像系统,并利用四只不同生理条件的小鼠对该系统进行了肿瘤检测测试。结果表明,这种三模态成像系统可以提供声学、光学和机械特性的互补信息。肿瘤的可视化和维度估算可以为诊断和治疗提供更全面的组织特征描述。
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.