Perovskites and their constructed near-infrared photodetectors

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-06-22 DOI:10.1016/j.nanoen.2024.109904
Wen-Huan Gao, Cong Chen
{"title":"Perovskites and their constructed near-infrared photodetectors","authors":"Wen-Huan Gao,&nbsp;Cong Chen","doi":"10.1016/j.nanoen.2024.109904","DOIUrl":null,"url":null,"abstract":"<div><p>Organo-metal halide perovskites have emerged as promising candidates in photoelectric detection. Although most existing research and reviews have concentrated on perovskite-based photodetectors for high-energy X-rays and visible light applications, studies on perovskite-based near-infrared (NIR) photodetectors remain scarce. Notably, hybrid perovskites fabricated using either pure Sn or a mixed Sn/Pb can achieve the lowest bandgap of 1.21 eV. This characteristic enables exceptional NIR photoresponse within the 780–1050 nm range, offering advantages in terms of high sensitivity, minimal dark current, and an elevated detection rate. To enhance the performance and stability of narrowed bandgap Sn-based perovskite photodetectors, researchers have developed a series of strategies, including reduction additive, defect passivation, and interface regulation. Despite these advancements, Sn-based perovskites have yet to surpass the NIR response range of 1.1 eV, typical of Si-based photodetectors. In pursuit of further extending and amplifying the NIR and infrared response of perovskite, scientists have investigated integrating organic materials, crystalline silicon/germanium, III-V compounds (e.g., GaAs), and IV-VI quantum dots (e.g., PbSe, PbS QDs) with perovskite. These efforts aim to create complementary heterostructures for spectrum response for extending the NIR light response of perovskite photodetectors. This review encapsulates the current research status of perovskite NIR detectors and explores effective methods for expanding their spectral range. Furthermore, it envisions the prospective advancements in NIR photodetector technology based on perovskite materials, underscoring the potential for significant breakthroughs in this field.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524006529","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Organo-metal halide perovskites have emerged as promising candidates in photoelectric detection. Although most existing research and reviews have concentrated on perovskite-based photodetectors for high-energy X-rays and visible light applications, studies on perovskite-based near-infrared (NIR) photodetectors remain scarce. Notably, hybrid perovskites fabricated using either pure Sn or a mixed Sn/Pb can achieve the lowest bandgap of 1.21 eV. This characteristic enables exceptional NIR photoresponse within the 780–1050 nm range, offering advantages in terms of high sensitivity, minimal dark current, and an elevated detection rate. To enhance the performance and stability of narrowed bandgap Sn-based perovskite photodetectors, researchers have developed a series of strategies, including reduction additive, defect passivation, and interface regulation. Despite these advancements, Sn-based perovskites have yet to surpass the NIR response range of 1.1 eV, typical of Si-based photodetectors. In pursuit of further extending and amplifying the NIR and infrared response of perovskite, scientists have investigated integrating organic materials, crystalline silicon/germanium, III-V compounds (e.g., GaAs), and IV-VI quantum dots (e.g., PbSe, PbS QDs) with perovskite. These efforts aim to create complementary heterostructures for spectrum response for extending the NIR light response of perovskite photodetectors. This review encapsulates the current research status of perovskite NIR detectors and explores effective methods for expanding their spectral range. Furthermore, it envisions the prospective advancements in NIR photodetector technology based on perovskite materials, underscoring the potential for significant breakthroughs in this field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Perovskites 及其构造的近红外光电探测器
有机金属卤化物包光体已成为光电检测领域前景广阔的候选材料。尽管现有的研究和综述大多集中于基于包晶石的光电探测器在高能 X 射线和可见光领域的应用,但有关基于包晶石的近红外(NIR)光电探测器的研究仍然很少。值得注意的是,使用纯锡或锡/铅混合物制造的混合包晶可以达到 1.21 eV 的最低带隙。这一特性使得 780-1050 nm 范围内的近红外光响应非常出色,具有灵敏度高、暗电流小和检测率高等优点。为了提高窄带隙锡基包晶光电探测器的性能和稳定性,研究人员开发了一系列策略,包括还原添加剂、缺陷钝化和界面调节。尽管取得了这些进展,但锡基包晶石的近红外响应范围仍未超过 1.1 eV,这也是硅基光电探测器的典型响应范围。为了进一步扩展和放大包晶体的近红外和红外响应,科学家们研究了如何将有机材料、晶体硅/锗、III-V 族化合物(如砷化镓)和 IV-VI 族量子点(如硒化铅、硒化铅量子点)与包晶体结合在一起。这些努力旨在创建光谱响应的互补异质结构,以扩展包晶石光电探测器的近红外光响应。本综述概述了包晶近红外探测器的研究现状,并探讨了扩展其光谱范围的有效方法。此外,它还展望了基于包晶体材料的近红外光电探测器技术的发展前景,强调了在这一领域取得重大突破的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Tellurium Doped Sulfurized Polyacrylonitrile Nanoflower for High-Energy-Density, Long-Lifespan Sodium−Sulfur Batteries Liquid-free, tough and transparent ionic conductive elastomers based on nanocellulose for multi-functional sensors and triboelectric nanogenerators Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self- powered IoT applications Positive Impact of Surface Defects on Maxwell's Displacement Current-driven Nano-LEDs: the Application of TENG Technology Vertical two-dimensional heterostructures and superlattices for lithium batteries and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1