Expediting layered oxide cathodes based on electronic structure engineering for sodium-ion batteries: Reversible phase transformation, abnormal structural regulation, and stable anionic redox

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-06-21 DOI:10.1016/j.nanoen.2024.109905
Xin-Yu Zhang , Hai-Yan Hu , Xin-Yu Liu , Jingqiang Wang , Yi-Feng Liu , Yan-Fang Zhu , Ling-Yi Kong , Zhuang-Chun Jian , Shu-Lei Chou , Yao Xiao
{"title":"Expediting layered oxide cathodes based on electronic structure engineering for sodium-ion batteries: Reversible phase transformation, abnormal structural regulation, and stable anionic redox","authors":"Xin-Yu Zhang ,&nbsp;Hai-Yan Hu ,&nbsp;Xin-Yu Liu ,&nbsp;Jingqiang Wang ,&nbsp;Yi-Feng Liu ,&nbsp;Yan-Fang Zhu ,&nbsp;Ling-Yi Kong ,&nbsp;Zhuang-Chun Jian ,&nbsp;Shu-Lei Chou ,&nbsp;Yao Xiao","doi":"10.1016/j.nanoen.2024.109905","DOIUrl":null,"url":null,"abstract":"<div><p>With the growing demand for energy storage, layered oxide cathodes (Na<sub>x</sub>TMO<sub>2</sub>) for sodium-ion batteries (SIBs) have become the spotlight for researchers. However, irreversible multiphase transformation and structural degradation, as well as lattice oxygen loss, hindered their commercialization. Electronic structure modulation based on the orbital hybridization concept is an important way to solve key scientific problems. Herein, due to its unique electronic structure, Sn is chosen as the proof of the conceptual element, and its effect on layered oxide cathode is summarized in three aspects: reversible phase transformation, abnormal structural regulation, and stable anionic redox. Firstly, the large size of Sn<sup>4+</sup> suppresses the sliding of the transition metal oxide (TMO<sub>2</sub>) layer and Na<sup>+</sup>/vacancy ordering as well as enhances the delocalization of electrons. Secondly, Sn with a similar ionic radius to other TM ions in the structure promotes the stacking of the O3 phase. What’s more, the distinctive electronic structure of Sn<sup>4+</sup> will enhance the operating voltage. Thirdly, a strong Sn-O bond stabilizes the lattice oxygen, promotes stable anion redox, and improves the energy density of the battery. Therefore, electronic structure modulation can provide technical direction for the development and industrialization of high-performance SIBs.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524006530","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing demand for energy storage, layered oxide cathodes (NaxTMO2) for sodium-ion batteries (SIBs) have become the spotlight for researchers. However, irreversible multiphase transformation and structural degradation, as well as lattice oxygen loss, hindered their commercialization. Electronic structure modulation based on the orbital hybridization concept is an important way to solve key scientific problems. Herein, due to its unique electronic structure, Sn is chosen as the proof of the conceptual element, and its effect on layered oxide cathode is summarized in three aspects: reversible phase transformation, abnormal structural regulation, and stable anionic redox. Firstly, the large size of Sn4+ suppresses the sliding of the transition metal oxide (TMO2) layer and Na+/vacancy ordering as well as enhances the delocalization of electrons. Secondly, Sn with a similar ionic radius to other TM ions in the structure promotes the stacking of the O3 phase. What’s more, the distinctive electronic structure of Sn4+ will enhance the operating voltage. Thirdly, a strong Sn-O bond stabilizes the lattice oxygen, promotes stable anion redox, and improves the energy density of the battery. Therefore, electronic structure modulation can provide technical direction for the development and industrialization of high-performance SIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于钠离子电池电子结构工程的层状氧化物阴极加速:可逆相变、异常结构调节和稳定的阴离子氧化还原
随着储能需求的不断增长,用于钠离子电池(SIB)的层状氧化物阴极(NaxTMO2)已成为研究人员关注的焦点。然而,不可逆的多相转变和结构退化以及晶格氧损失阻碍了它们的商业化。基于轨道杂化概念的电子结构调控是解决关键科学问题的重要途径。在此,由于其独特的电子结构,选择 Sn 作为概念元素的证明,并将其对层状氧化物阴极的影响归纳为可逆相变、异常结构调控和稳定的阴离子氧化还原三个方面。首先,Sn4+ 的大尺寸抑制了过渡金属氧化物(TMO2)层的滑动和 Na+/空位有序化,并增强了电子的脱ocal。其次,与结构中其他 TM 离子具有相似离子半径的 Sn 会促进 O3 相的堆积。此外,Sn4+ 独特的电子结构会提高工作电压。第三,强 Sn-O 键能稳定晶格氧,促进稳定的阴离子氧化还原,提高电池的能量密度。因此,电子结构调制可为高性能 SIB 的开发和产业化提供技术方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Tellurium Doped Sulfurized Polyacrylonitrile Nanoflower for High-Energy-Density, Long-Lifespan Sodium−Sulfur Batteries Liquid-free, tough and transparent ionic conductive elastomers based on nanocellulose for multi-functional sensors and triboelectric nanogenerators Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self- powered IoT applications Positive Impact of Surface Defects on Maxwell's Displacement Current-driven Nano-LEDs: the Application of TENG Technology Vertical two-dimensional heterostructures and superlattices for lithium batteries and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1