Thermal behaviors of coal particles in an impinging entrained-flow gasifier: Char oxidation

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Combustion and Flame Pub Date : 2024-06-28 DOI:10.1016/j.combustflame.2024.113575
Yue Wang , Yan Gong , Hantao Lu , Qinghua Guo , Guangsuo Yu
{"title":"Thermal behaviors of coal particles in an impinging entrained-flow gasifier: Char oxidation","authors":"Yue Wang ,&nbsp;Yan Gong ,&nbsp;Hantao Lu ,&nbsp;Qinghua Guo ,&nbsp;Guangsuo Yu","doi":"10.1016/j.combustflame.2024.113575","DOIUrl":null,"url":null,"abstract":"<div><p>The thermal behaviors of high-temperature particle (HTP) and low-temperature particle (LTP) are investigated based on the bench-scale impinging entrained-flow coal-water slurry (CWS) gasification experimental platform with a modified visualization system. The size and velocity distribution of both particles, and the evolution of HTP are analyzed through the algorithmic and precise processing of the image sequences. In addition, in-situ temperature diagnosis of the particles during the reaction process were realized. The typical evolution process and the temperature of HTP in char oxidation stage are obtained. The results show that the concentration of HTP in the gasifier is greater than LTP, but the particle size is relatively small. Particles moving at the low speed (0–2 m/s) account for the largest proportion of both HTP and LTP. The char oxidation process lasts over 300 ms and can be divided into three reaction stages. During the reaction, the peak temperature at the center of the particle can reach more than 2000 K. The average temperature of the particles gradually increased, reaching a peak in reaction stage II (1500 K) followed by a gradual decrease. The particle temperature is affected by O/C and is prone to experience swelling and bubbling phenomena during char oxidation.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024002840","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal behaviors of high-temperature particle (HTP) and low-temperature particle (LTP) are investigated based on the bench-scale impinging entrained-flow coal-water slurry (CWS) gasification experimental platform with a modified visualization system. The size and velocity distribution of both particles, and the evolution of HTP are analyzed through the algorithmic and precise processing of the image sequences. In addition, in-situ temperature diagnosis of the particles during the reaction process were realized. The typical evolution process and the temperature of HTP in char oxidation stage are obtained. The results show that the concentration of HTP in the gasifier is greater than LTP, but the particle size is relatively small. Particles moving at the low speed (0–2 m/s) account for the largest proportion of both HTP and LTP. The char oxidation process lasts over 300 ms and can be divided into three reaction stages. During the reaction, the peak temperature at the center of the particle can reach more than 2000 K. The average temperature of the particles gradually increased, reaching a peak in reaction stage II (1500 K) followed by a gradual decrease. The particle temperature is affected by O/C and is prone to experience swelling and bubbling phenomena during char oxidation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
煤颗粒在撞击内流气化炉中的热行为:炭氧化
基于台架规模的冲击内流水煤浆(CWS)气化实验平台和改进的可视化系统,研究了高温颗粒(HTP)和低温颗粒(LTP)的热行为。通过对图像序列进行算法和精确处理,分析了两种颗粒的尺寸和速度分布以及低温颗粒的演变过程。此外,还实现了反应过程中颗粒的原位温度诊断。获得了炭氧化阶段 HTP 的典型演化过程和温度。结果表明,气化炉中 HTP 的浓度大于 LTP,但粒径相对较小。在低速(0-2 m/s)运动的颗粒中,HTP 和 LTP 所占比例最大。炭氧化过程持续时间超过 300 毫秒,可分为三个反应阶段。在反应过程中,颗粒中心的峰值温度可达 2000 K 以上,颗粒的平均温度逐渐升高,在反应第二阶段达到峰值(1500 K),随后逐渐降低。颗粒温度受 O/C 的影响,在炭氧化过程中容易出现膨胀和气泡现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
期刊最新文献
Automatization of theoretical kinetic data generation for tabulated TS models building - Part 1: Application to 1,3-H-shift reactions Turbulent spray combustion modeling in reduced tabulation parameter space by similarity mapping Numerical investigation of lean methane flame response to NRP discharges actuation Oxidation of butane-2,3-dione at high pressure: Implications for ketene chemistry Ignition and combustion characteristics of boron particles under reduced pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1