Enhancing energy harvesting for low-power electronics: A study on the impact of electrode number and freestanding layer in rotary triboelectric nanogenerator

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Applied Physics Pub Date : 2024-06-27 DOI:10.1016/j.cap.2024.06.015
A. Shahriyari , Z. GolshanBafghi , M. Yousefizad , N. Manavizadeh , H. Pourfarzad , F. Ahaninpajooh , S. Samoodi
{"title":"Enhancing energy harvesting for low-power electronics: A study on the impact of electrode number and freestanding layer in rotary triboelectric nanogenerator","authors":"A. Shahriyari ,&nbsp;Z. GolshanBafghi ,&nbsp;M. Yousefizad ,&nbsp;N. Manavizadeh ,&nbsp;H. Pourfarzad ,&nbsp;F. Ahaninpajooh ,&nbsp;S. Samoodi","doi":"10.1016/j.cap.2024.06.015","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, the rotary triboelectric nanogenerator (R-TENG) with a modified structure is simulated and fabricated to investigate the effect of changes on the geometric structure experimentally. The R-TENGs were fabricated using cost-effective and easily accessible dry-film lithography based on the PCB approach. This process which is explained step-by-step in detail in this paper, provides uniform electrode layers without using high-tech instruments, resulting in enhanced fabrication speed and electrical performance. R-TENGs with varying electrode and PTFE sector counts (32/16, 16/8, and 8/4) were fabricated and analyzed. At 1000 rpm, the output power of R-TENGs with 8, 16, and 32 electrodes demonstrated escalating output power with increasing electrode numbers: 6.82, 19.52, and 30.64 Wm<sup>-2</sup>, respectively. Simulation results corroborated the experimental findings, confirming that more electrodes and freestanding sectors yield superior power density and electrical generation. The 32-electrode, 16-sector R-TENG outperformed its counterparts, suggesting that strategic design alterations can significantly optimize energy harvesting in R-TENGs.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"66 ","pages":"Pages 49-59"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924001470","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, the rotary triboelectric nanogenerator (R-TENG) with a modified structure is simulated and fabricated to investigate the effect of changes on the geometric structure experimentally. The R-TENGs were fabricated using cost-effective and easily accessible dry-film lithography based on the PCB approach. This process which is explained step-by-step in detail in this paper, provides uniform electrode layers without using high-tech instruments, resulting in enhanced fabrication speed and electrical performance. R-TENGs with varying electrode and PTFE sector counts (32/16, 16/8, and 8/4) were fabricated and analyzed. At 1000 rpm, the output power of R-TENGs with 8, 16, and 32 electrodes demonstrated escalating output power with increasing electrode numbers: 6.82, 19.52, and 30.64 Wm-2, respectively. Simulation results corroborated the experimental findings, confirming that more electrodes and freestanding sectors yield superior power density and electrical generation. The 32-electrode, 16-sector R-TENG outperformed its counterparts, suggesting that strategic design alterations can significantly optimize energy harvesting in R-TENGs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强低功耗电子设备的能量收集:旋转式三电纳米发电机中电极数量和独立层的影响研究
在此,我们模拟并制造了具有改进结构的旋转三电纳米发电机(R-TENG),以实验研究几何结构变化的影响。R-TENG 的制造采用了基于 PCB 方法的干膜光刻技术,成本低廉且易于实现。本文将逐步详细介绍这一工艺,它能在不使用高科技仪器的情况下提供均匀的电极层,从而提高制造速度和电气性能。本文制作并分析了不同电极和聚四氟乙烯扇形数(32/16、16/8 和 8/4)的 R-TENG。在 1000 转/分的转速下,带有 8、16 和 32 个电极的 R-TENG 的输出功率随着电极数的增加而增加:分别为 6.82、19.52 和 30.64 Wm-2。仿真结果与实验结果相吻合,证实了更多电极和独立扇区可产生更高的功率密度和发电量。32 个电极、16 个扇区的 R-TENG 性能优于同类产品,这表明战略性的设计改变可以显著优化 R-TENG 的能量收集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
期刊最新文献
Transient heat-flux method for measuring heat capacity: Examples from Cu and VO2 Permeability modulation of Fe-Ni/nanoparticle (Ni, Zn) soft magnetic composites Editorial Board Effect of cadmium sulphide on poly (ethyl methacrylate) (PEMA) based electrolyte nanocomposite and its application in dye sensitized solar cell (DSSC) Design and fabrication of ultrathin silicon-based strain gauges for piezoresistive pressure sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1