In-situ synthesis of yolk-shell Si/C anodes via ZnO transformation for high rate lithium-ion batteries

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Sustainable Materials and Technologies Pub Date : 2024-06-18 DOI:10.1016/j.susmat.2024.e01021
Siyue Fu , Jianhua Zhou , Guojing Wu , Wenping Liu , Haiqing Qin , Chenyan Liu , Tomohiro Sato , Ying Peng , Lei Miao
{"title":"In-situ synthesis of yolk-shell Si/C anodes via ZnO transformation for high rate lithium-ion batteries","authors":"Siyue Fu ,&nbsp;Jianhua Zhou ,&nbsp;Guojing Wu ,&nbsp;Wenping Liu ,&nbsp;Haiqing Qin ,&nbsp;Chenyan Liu ,&nbsp;Tomohiro Sato ,&nbsp;Ying Peng ,&nbsp;Lei Miao","doi":"10.1016/j.susmat.2024.e01021","DOIUrl":null,"url":null,"abstract":"<div><p>The conceptual design of yolk-shell structured Si/C composite materials is considered an effective approach to enhancing the structural stability of silicon-based anode materials over long cycles. Here, for the first time, zinc oxide is used as both the internal sacrificial layer and the external coating layer reactant, allowing it to be transformed into voids and the carbon layer precursor during subsequent operations. These internal voids can buffer the volume expansion of silicon, ensuring the electrode's integrity during cycling. The ZIF layer formed through in-situ solvothermal reactions can effectively reduce the occurrence of isolated ZIF in the solvent, resulting in better coating of the nano‑silicon particles. Compared to traditional processes for preparing yolk-shell structures, this gentle synthesis strategy avoids the use of HF, offering a new direction for large-scale production. This optimized yolk-shell Si/C-0.70 M electrode exhibits excellent rate performance (specific capacity of 988 mA h g<sup>−1</sup> at a high current density of 2 A g<sup>−1</sup>) and long-term cycling stability (specific capacity of 722 mA h g<sup>−1</sup> after 300 cycles at a current density of 0.5 A g<sup>−1</sup>; reversible specific capacity of 557 mA h g<sup>−1</sup> after 500 cycles). Therefore, this scalable study offers a new approach for safely producing yolk-shell anode materials with high cycle stability on a large scale.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221499372400201X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The conceptual design of yolk-shell structured Si/C composite materials is considered an effective approach to enhancing the structural stability of silicon-based anode materials over long cycles. Here, for the first time, zinc oxide is used as both the internal sacrificial layer and the external coating layer reactant, allowing it to be transformed into voids and the carbon layer precursor during subsequent operations. These internal voids can buffer the volume expansion of silicon, ensuring the electrode's integrity during cycling. The ZIF layer formed through in-situ solvothermal reactions can effectively reduce the occurrence of isolated ZIF in the solvent, resulting in better coating of the nano‑silicon particles. Compared to traditional processes for preparing yolk-shell structures, this gentle synthesis strategy avoids the use of HF, offering a new direction for large-scale production. This optimized yolk-shell Si/C-0.70 M electrode exhibits excellent rate performance (specific capacity of 988 mA h g−1 at a high current density of 2 A g−1) and long-term cycling stability (specific capacity of 722 mA h g−1 after 300 cycles at a current density of 0.5 A g−1; reversible specific capacity of 557 mA h g−1 after 500 cycles). Therefore, this scalable study offers a new approach for safely producing yolk-shell anode materials with high cycle stability on a large scale.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过氧化锌转化原位合成用于高倍率锂离子电池的卵黄壳 Si/C 阳极材料
卵壳结构硅/碳复合材料的概念设计被认为是提高硅基阳极材料长周期结构稳定性的有效方法。在这里,氧化锌首次被用作内部牺牲层和外部涂层的反应物,使其在后续操作过程中转化为空隙和碳层前驱体。这些内部空隙可以缓冲硅的体积膨胀,确保电极在循环过程中的完整性。通过原位溶解热反应形成的 ZIF 层可有效减少溶剂中孤立 ZIF 的出现,从而使纳米硅颗粒得到更好的包覆。与制备卵壳结构的传统工艺相比,这种温和的合成策略避免了高频的使用,为大规模生产提供了新的方向。这种优化的卵黄壳硅/C-0.70 M 电极表现出优异的速率性能(在 2 A g-1 的高电流密度下,比容量为 988 mA h g-1)和长期循环稳定性(在 0.5 A g-1 的电流密度下,循环 300 次后,比容量为 722 mA h g-1;循环 500 次后,可逆比容量为 557 mA h g-1)。因此,这项可扩展研究为大规模安全生产具有高循环稳定性的卵黄壳阳极材料提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
期刊最新文献
Potential and challenges of recycled polymer plastics and natural waste materials for additive manufacturing Advances and prospects of sulfur quantum dots in food sensing applications A new method to recycle Li-ion batteries with laser materials processing technology Printable ionic liquid modified cellulose acetate for sustainable chromic and resistive temperature sensing Tailoring SrFeO3 cathode with Ta and F allows high performance for proton-conducting solid oxide fuel cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1