Zhifan Chen, Angxu Duan, Yang Liu, Hanqi Zhao, Chunyang Dai, Seng Hu, Xiaolong Lei, Jianfeng Hu, Lin Chen
{"title":"Discrete element contact model and parameter calibration of sticky particles and agglomerates","authors":"Zhifan Chen, Angxu Duan, Yang Liu, Hanqi Zhao, Chunyang Dai, Seng Hu, Xiaolong Lei, Jianfeng Hu, Lin Chen","doi":"10.1016/j.jterra.2024.100998","DOIUrl":null,"url":null,"abstract":"<div><p>The soil in southwest China is a cohesive soil in which discrete cohesive particles and aggregates coexist. In view of the problem that there are many studies on discrete cohesive particles and a lack of research on aggregates, discrete element software DEM is used to conduct a study on cohesive particles and agglomerates parameter calibration. The angle of repose is selected as the target value to calibrate the simulation parameters of sticky particles. Then, the simulation parameters of the viscous particles are used as the basis for the calibration of the contact parameters of the agglomerates, and shear experiments are conducted on the agglomerates, with the ultimate shear depth and ultimate shear force as target values. The results show that the parameters of the agglomerate are: Normal Stiffness per unit area is 5.627 × 10<sup>8</sup> N/m<sup>3</sup>, Shear Stiffness per unit area is 4.359 × 10<sup>8</sup> N/m<sup>3</sup>, Critical Normal Stress is 3.5 × 10<sup>6</sup> Pa, Critical Shear Stress is 4.5 × 10<sup>6</sup> Pa and Bonded Disk Radius is 5.43 mm. Through the particle sliding friction angle test and the agglomerate compression test, it was verified that the errors of sticky particles were 0.30 % and 0.37 % respectively, and the error of agglomerates was 1.69 %.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022489824000405/pdfft?md5=a687c65faf0abd40ea368ca45146d2a1&pid=1-s2.0-S0022489824000405-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000405","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The soil in southwest China is a cohesive soil in which discrete cohesive particles and aggregates coexist. In view of the problem that there are many studies on discrete cohesive particles and a lack of research on aggregates, discrete element software DEM is used to conduct a study on cohesive particles and agglomerates parameter calibration. The angle of repose is selected as the target value to calibrate the simulation parameters of sticky particles. Then, the simulation parameters of the viscous particles are used as the basis for the calibration of the contact parameters of the agglomerates, and shear experiments are conducted on the agglomerates, with the ultimate shear depth and ultimate shear force as target values. The results show that the parameters of the agglomerate are: Normal Stiffness per unit area is 5.627 × 108 N/m3, Shear Stiffness per unit area is 4.359 × 108 N/m3, Critical Normal Stress is 3.5 × 106 Pa, Critical Shear Stress is 4.5 × 106 Pa and Bonded Disk Radius is 5.43 mm. Through the particle sliding friction angle test and the agglomerate compression test, it was verified that the errors of sticky particles were 0.30 % and 0.37 % respectively, and the error of agglomerates was 1.69 %.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.