Brain Tumor Segmentation Based on α-Expansion Graph Cut

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Imaging Systems and Technology Pub Date : 2024-06-24 DOI:10.1002/ima.23132
Roaa Soloh, Hassan Alabboud, Ahmad Shahin, Adnan Yassine, Abdallah El Chakik
{"title":"Brain Tumor Segmentation Based on α-Expansion Graph Cut","authors":"Roaa Soloh,&nbsp;Hassan Alabboud,&nbsp;Ahmad Shahin,&nbsp;Adnan Yassine,&nbsp;Abdallah El Chakik","doi":"10.1002/ima.23132","DOIUrl":null,"url":null,"abstract":"<p>In recent years, there has been an increased interest in using image processing, computer vision, and machine learning in biological and medical imaging research. One area of this interest is the diagnosis of brain tumors, which is considered a difficult and time-consuming task traditionally performed manually. In this study, we present a method for tumor detection from magnetic resonance images (MRI) using a well-known graph-based algorithm, the Boykov–Kolmogorov algorithm, and the α-expansion method. This approach involves pre-processing the MRIs, representing the image positions as nodes, and calculations of the weights between edges as differences in intensity. The problem is formulated as an energy minimization problem and is solved by finding the 0,1 score for the image. Post-processing is also performed to enhance the overall segmentation. The proposed method is easy to implement and shows high accuracy, precision, and efficiency in the results. We believe that this approach will bring significant benefits to scientists and healthcare researchers in qualitative research and can be applied to various imaging modalities for future research.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ima.23132","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23132","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, there has been an increased interest in using image processing, computer vision, and machine learning in biological and medical imaging research. One area of this interest is the diagnosis of brain tumors, which is considered a difficult and time-consuming task traditionally performed manually. In this study, we present a method for tumor detection from magnetic resonance images (MRI) using a well-known graph-based algorithm, the Boykov–Kolmogorov algorithm, and the α-expansion method. This approach involves pre-processing the MRIs, representing the image positions as nodes, and calculations of the weights between edges as differences in intensity. The problem is formulated as an energy minimization problem and is solved by finding the 0,1 score for the image. Post-processing is also performed to enhance the overall segmentation. The proposed method is easy to implement and shows high accuracy, precision, and efficiency in the results. We believe that this approach will bring significant benefits to scientists and healthcare researchers in qualitative research and can be applied to various imaging modalities for future research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 α 展开图切割的脑肿瘤分段技术
近年来,人们对在生物和医学成像研究中使用图像处理、计算机视觉和机器学习的兴趣与日俱增。脑肿瘤的诊断就是其中的一个领域,传统上,脑肿瘤的诊断是一项艰巨而耗时的任务,需要人工完成。在这项研究中,我们提出了一种利用著名的基于图的算法、Boykov-Kolmogorov 算法和 α 展开方法从磁共振图像(MRI)中检测肿瘤的方法。这种方法涉及对核磁共振成像进行预处理,将图像位置表示为节点,并将边缘之间的权重计算为强度差异。该问题被表述为能量最小化问题,通过找到图像的 0,1 分数来解决。此外,还进行了后处理,以增强整体分割效果。所提出的方法易于实施,并在结果中显示出较高的准确性、精确性和效率。我们相信,这种方法将为定性研究领域的科学家和医疗保健研究人员带来巨大收益,并可应用于未来研究的各种成像模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
期刊最新文献
Unveiling Cancer: A Data-Driven Approach for Early Identification and Prediction Using F-RUS-RF Model Predicting the Early Detection of Breast Cancer Using Hybrid Machine Learning Systems and Thermographic Imaging CATNet: A Cross Attention and Texture-Aware Network for Polyp Segmentation VMC-UNet: A Vision Mamba-CNN U-Net for Tumor Segmentation in Breast Ultrasound Image Suppression of the Tissue Component With the Total Least-Squares Algorithm to Improve Second Harmonic Imaging of Ultrasound Contrast Agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1