TS-Net: Trans-Scale Network for Medical Image Segmentation

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Imaging Systems and Technology Pub Date : 2025-03-18 DOI:10.1002/ima.70064
HuiFang Wang, YaTong Liu, Jiongyao Ye, Dawei Yang, Yu Zhu
{"title":"TS-Net: Trans-Scale Network for Medical Image Segmentation","authors":"HuiFang Wang,&nbsp;YaTong Liu,&nbsp;Jiongyao Ye,&nbsp;Dawei Yang,&nbsp;Yu Zhu","doi":"10.1002/ima.70064","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accurate medical image segmentation is crucial for clinical diagnosis and disease treatment. However, there are still great challenges for most existing methods to extract accurate features from medical images because of blurred boundaries and various appearances. To overcome the above limitations, we propose a novel medical image segmentation network named TS-Net that effectively combines the advantages of CNN and Transformer to enhance the feature extraction ability. Specifically, we design a Multi-scale Convolution Modulation (MCM) module to simplify the self-attention mechanism through a convolution modulation strategy that incorporates multi-scale large-kernel convolution into depth-separable convolution, effectively extracting the multi-scale global features and local features. Besides, we adopt the concept of feature complementarity to facilitate the interaction between high-level semantic features and low-level spatial features through the designed Scale Inter-active Attention (SIA) module. The proposed method is evaluated on four different types of medical image segmentation datasets, and the experimental results show its competence with other state-of-the-art methods. The method achieves an average Dice Similarity Coefficient (DSC) of 90.79% ± 1.01% on the public NIH dataset for pancreas segmentation, 76.62% ± 4.34% on the public MSD dataset for pancreatic cancer segmentation, 80.70% ± 6.40% on the private PROMM (Prostate Multi-parametric MRI) dataset for prostate cancer segmentation, and 91.42% ± 0.55% on the public Kvasir-SEG dataset for polyp segmentation. The experimental results across the four different segmentation tasks for medical images demonstrate the effectiveness of the Trans-Scale network.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70064","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate medical image segmentation is crucial for clinical diagnosis and disease treatment. However, there are still great challenges for most existing methods to extract accurate features from medical images because of blurred boundaries and various appearances. To overcome the above limitations, we propose a novel medical image segmentation network named TS-Net that effectively combines the advantages of CNN and Transformer to enhance the feature extraction ability. Specifically, we design a Multi-scale Convolution Modulation (MCM) module to simplify the self-attention mechanism through a convolution modulation strategy that incorporates multi-scale large-kernel convolution into depth-separable convolution, effectively extracting the multi-scale global features and local features. Besides, we adopt the concept of feature complementarity to facilitate the interaction between high-level semantic features and low-level spatial features through the designed Scale Inter-active Attention (SIA) module. The proposed method is evaluated on four different types of medical image segmentation datasets, and the experimental results show its competence with other state-of-the-art methods. The method achieves an average Dice Similarity Coefficient (DSC) of 90.79% ± 1.01% on the public NIH dataset for pancreas segmentation, 76.62% ± 4.34% on the public MSD dataset for pancreatic cancer segmentation, 80.70% ± 6.40% on the private PROMM (Prostate Multi-parametric MRI) dataset for prostate cancer segmentation, and 91.42% ± 0.55% on the public Kvasir-SEG dataset for polyp segmentation. The experimental results across the four different segmentation tasks for medical images demonstrate the effectiveness of the Trans-Scale network.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
期刊最新文献
TS-Net: Trans-Scale Network for Medical Image Segmentation A Time-Adaptive Diffusion-Based CT Image Denoising Method by Processing Directional and Non-Local Information Generating Medical Reports With a Novel Deep Learning Architecture 3D Microscopic Images Segmenter Modeling by Applying Two-Stage Optimization to an Ensemble of Segmentation Methods Using a Genetic Algorithm CLA-UNet: Convolution and Focused Linear Attention Fusion for Tumor Cell Nucleus Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1