SynthA1c: Towards Clinically Interpretable Patient Representations for Diabetes Risk Stratification.

Michael S Yao, Allison Chae, Matthew T MacLean, Anurag Verma, Jeffrey Duda, James C Gee, Drew A Torigian, Daniel Rader, Charles E Kahn, Walter R Witschey, Hersh Sagreiya
{"title":"SynthA1c: Towards Clinically Interpretable Patient Representations for Diabetes Risk Stratification.","authors":"Michael S Yao, Allison Chae, Matthew T MacLean, Anurag Verma, Jeffrey Duda, James C Gee, Drew A Torigian, Daniel Rader, Charles E Kahn, Walter R Witschey, Hersh Sagreiya","doi":"10.1007/978-3-031-46005-0_5","DOIUrl":null,"url":null,"abstract":"<p><p>Early diagnosis of Type 2 Diabetes Mellitus (T2DM) is crucial to enable timely therapeutic interventions and lifestyle modifications. As the time available for clinical office visits shortens and medical imaging data become more widely available, patient image data could be used to opportunistically identify patients for additional T2DM diagnostic workup by physicians. We investigated whether image-derived phenotypic data could be leveraged in tabular learning classifier models to predict T2DM risk in an automated fashion to flag high-risk patients <i>without</i> the need for additional blood laboratory measurements. In contrast to traditional binary classifiers, we leverage neural networks and decision tree models to represent patient data as 'SynthA1c' latent variables, which mimic blood hemoglobin A1c empirical lab measurements, that achieve sensitivities as high as 87.6%. To evaluate how SynthA1c models may generalize to other patient populations, we introduce a novel generalizable metric that uses vanilla data augmentation techniques to predict model performance on input out-of-domain covariates. We show that image-derived phenotypes and physical examination data together can accurately predict diabetes risk as a means of opportunistic risk stratification enabled by artificial intelligence and medical imaging. Our code is available at https://github.com/allisonjchae/DMT2RiskAssessment.</p>","PeriodicalId":92572,"journal":{"name":"PRedictive Intelligence in MEdicine. PRIME (Workshop)","volume":"14277 ","pages":"46-57"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217801/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRedictive Intelligence in MEdicine. PRIME (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-46005-0_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Early diagnosis of Type 2 Diabetes Mellitus (T2DM) is crucial to enable timely therapeutic interventions and lifestyle modifications. As the time available for clinical office visits shortens and medical imaging data become more widely available, patient image data could be used to opportunistically identify patients for additional T2DM diagnostic workup by physicians. We investigated whether image-derived phenotypic data could be leveraged in tabular learning classifier models to predict T2DM risk in an automated fashion to flag high-risk patients without the need for additional blood laboratory measurements. In contrast to traditional binary classifiers, we leverage neural networks and decision tree models to represent patient data as 'SynthA1c' latent variables, which mimic blood hemoglobin A1c empirical lab measurements, that achieve sensitivities as high as 87.6%. To evaluate how SynthA1c models may generalize to other patient populations, we introduce a novel generalizable metric that uses vanilla data augmentation techniques to predict model performance on input out-of-domain covariates. We show that image-derived phenotypes and physical examination data together can accurately predict diabetes risk as a means of opportunistic risk stratification enabled by artificial intelligence and medical imaging. Our code is available at https://github.com/allisonjchae/DMT2RiskAssessment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SynthA1c:实现临床可解释的糖尿病风险分层患者表征。
2 型糖尿病(T2DM)的早期诊断对于及时采取治疗干预措施和改变生活方式至关重要。随着临床就诊时间的缩短和医学影像数据的普及,患者的图像数据可用于医生对患者进行额外的 T2DM 诊断工作。我们研究了能否在表格学习分类器模型中利用图像衍生的表型数据,以自动方式预测 T2DM 风险,从而标记出高风险患者,而无需进行额外的血液实验室测量。与传统的二元分类器不同,我们利用神经网络和决策树模型将患者数据表示为 "SynthA1c "潜变量,该潜变量模仿血液血红蛋白 A1c 经验实验室测量值,灵敏度高达 87.6%。为了评估 SynthA1c 模型在其他患者群体中的通用性,我们引入了一种新的通用度量方法,该方法使用 vanilla 数据增强技术来预测输入域外协变量的模型性能。我们的研究表明,图像衍生表型和体格检查数据可共同准确预测糖尿病风险,是人工智能和医学成像技术实现机会性风险分层的一种手段。我们的代码见 https://github.com/allisonjchae/DMT2RiskAssessment。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spectral Graph Sample Weighting for Interpretable Sub-cohort Analysis in Predictive Models for Neuroimaging. SynthA1c: Towards Clinically Interpretable Patient Representations for Diabetes Risk Stratification. Imputing Brain Measurements Across Data Sets via Graph Neural Networks. Multiple Instance Neuroimage Transformer. Bridging the Gap between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1