Multiple Instance Neuroimage Transformer.

Ayush Singla, Qingyu Zhao, Daniel K Do, Yuyin Zhou, Kilian M Pohl, Ehsan Adeli
{"title":"Multiple Instance Neuroimage Transformer.","authors":"Ayush Singla, Qingyu Zhao, Daniel K Do, Yuyin Zhou, Kilian M Pohl, Ehsan Adeli","doi":"10.1007/978-3-031-16919-9_4","DOIUrl":null,"url":null,"abstract":"<p><p>For the first time, we propose using a multiple instance learning based convolution-free transformer model, called Multiple Instance Neuroimage Transformer (MINiT), for the classification of T1-weighted (T1w) MRIs. We first present several variants of transformer models adopted for neuroimages. These models extract non-overlapping 3D blocks from the input volume and perform multi-headed self-attention on a sequence of their linear projections. MINiT, on the other hand, treats each of the non-overlapping 3D blocks of the input MRI as its own instance, splitting it further into non-overlapping 3D patches, on which multi-headed self-attention is computed. As a proof-of-concept, we evaluate the efficacy of our model by training it to identify sex from T1w-MRIs of two public datasets: Adolescent Brain Cognitive Development (ABCD) and the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA). The learned attention maps highlight voxels contributing to identifying sex differences in brain morphometry. The code is available at https://github.com/singlaayush/MINIT.</p>","PeriodicalId":92572,"journal":{"name":"PRedictive Intelligence in MEdicine. PRIME (Workshop)","volume":"13564 ","pages":"36-48"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629332/pdf/nihms-1844680.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRedictive Intelligence in MEdicine. PRIME (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-16919-9_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the first time, we propose using a multiple instance learning based convolution-free transformer model, called Multiple Instance Neuroimage Transformer (MINiT), for the classification of T1-weighted (T1w) MRIs. We first present several variants of transformer models adopted for neuroimages. These models extract non-overlapping 3D blocks from the input volume and perform multi-headed self-attention on a sequence of their linear projections. MINiT, on the other hand, treats each of the non-overlapping 3D blocks of the input MRI as its own instance, splitting it further into non-overlapping 3D patches, on which multi-headed self-attention is computed. As a proof-of-concept, we evaluate the efficacy of our model by training it to identify sex from T1w-MRIs of two public datasets: Adolescent Brain Cognitive Development (ABCD) and the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA). The learned attention maps highlight voxels contributing to identifying sex differences in brain morphometry. The code is available at https://github.com/singlaayush/MINIT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多实例神经图像转换器
我们首次提出使用基于多实例学习的无卷积变换器模型(称为 "多实例神经图像变换器",Multiple Instance Neuroimage Transformer (MINiT))对 T1 加权(T1w)核磁共振成像进行分类。我们首先介绍了神经图像转换器模型的几种变体。这些模型从输入容积中提取非重叠三维块,并在其线性投影序列上执行多头自注意。另一方面,MINiT 将输入磁共振成像的每个非重叠三维块视为自己的实例,将其进一步分割为非重叠三维斑块,并在这些斑块上计算多头自注意力。作为概念验证,我们通过对两个公开数据集的 T1w-MRI 进行性别识别训练,评估了模型的有效性:这两个公开数据集分别是青少年大脑认知发展(ABCD)和国家青少年酒精与神经发育联盟(NCANDA)。学习注意力图突出显示了有助于识别大脑形态学性别差异的体素。代码见 https://github.com/singlaayush/MINIT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spectral Graph Sample Weighting for Interpretable Sub-cohort Analysis in Predictive Models for Neuroimaging. SynthA1c: Towards Clinically Interpretable Patient Representations for Diabetes Risk Stratification. Imputing Brain Measurements Across Data Sets via Graph Neural Networks. Multiple Instance Neuroimage Transformer. Bridging the Gap between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1