Winding Function Model-Based Performance Evaluation of a PM Transverse Flux Generator for Applications in Direct-Drive Systems

Mehrage Ghods;Jawad Faiz;Ali A. Pourmoosa
{"title":"Winding Function Model-Based Performance Evaluation of a PM Transverse Flux Generator for Applications in Direct-Drive Systems","authors":"Mehrage Ghods;Jawad Faiz;Ali A. Pourmoosa","doi":"10.30941/CESTEMS.2024.00013","DOIUrl":null,"url":null,"abstract":"The magnetic flux in a permanent magnet transverse flux generator (PMTFG) is three-dimensional (3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method (FEM) is highly accurate and reliable for machine simulation, it requires a long computation time, which is crucial when it is to be used in an iterative optimization process. Therefore, an alternative to 3D-FEM is required as a rapid and accurate analytical technique. This paper presents an analytical model for PMTFG analysis using winding function method. To obtain the air gap MMF distribution, the excitation magneto-motive force (MMF) and the turn function are determined based on certain assumptions. The magnetizing inductance, flux density, and back-electro-magneto-motive force of the winding are then determined. To assess the accuracy of the proposed method, the analytically calculated parameters of the generator are compared to those obtained by a 3D-FEM. The presented method requires significantly shorter computation time than the 3D-FEM with comparable accuracy.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10545422","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CES Transactions on Electrical Machines and Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10545422/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetic flux in a permanent magnet transverse flux generator (PMTFG) is three-dimensional (3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method (FEM) is highly accurate and reliable for machine simulation, it requires a long computation time, which is crucial when it is to be used in an iterative optimization process. Therefore, an alternative to 3D-FEM is required as a rapid and accurate analytical technique. This paper presents an analytical model for PMTFG analysis using winding function method. To obtain the air gap MMF distribution, the excitation magneto-motive force (MMF) and the turn function are determined based on certain assumptions. The magnetizing inductance, flux density, and back-electro-magneto-motive force of the winding are then determined. To assess the accuracy of the proposed method, the analytically calculated parameters of the generator are compared to those obtained by a 3D-FEM. The presented method requires significantly shorter computation time than the 3D-FEM with comparable accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于绕组功能模型的直驱系统应用永磁横向磁通发电机性能评估
永磁横向磁通发生器(PMTFG)中的磁通量是三维的,因此需要通过三维磁场分析来评估其功效。虽然三维有限元法(FEM)在机器仿真方面具有很高的精确度和可靠性,但它需要较长的计算时间,这在用于迭代优化过程时至关重要。因此,需要一种快速准确的分析技术来替代 3D-FEM 方法。本文介绍了一种使用绕组函数法分析 PMTFG 的分析模型。为了获得气隙 MMF 分布,需要根据特定假设确定激励磁动力(MMF)和匝函数。然后确定绕组的磁化电感、磁通密度和反电动势。为了评估所提方法的准确性,我们将分析计算出的发电机参数与 3D-FEM 得出的参数进行了比较。在精度相当的情况下,所提出的方法所需的计算时间大大短于三维有限元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review of Fault-Tolerant Control for Motor Inverter Failure with Operational Quality Considered Winding Function Model-Based Performance Evaluation of a PM Transverse Flux Generator for Applications in Direct-Drive Systems Transient AC Overvoltage Suppression Orientated Reactive Power Control of the Wind Turbine in the LCC-HVDC Sending Grid Coordinated Capacitor Voltage Balancing Method for Cascaded H-Bridge Inverter with Supercapacitor and DC-DC Stage Analytical Model and Topology Optimization of Doubly-Fed Induction Generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1