Varuliantor Dear;Mohammad Sigit Arifianto;Prayitno Abadi;Cahyo Purnomo;Asnawi Husin;Adit Kurniawan;I. S. Iskandar
{"title":"Ionospheric channel impulse response measurement system for NVIS propagation mode over Java Island based on low-cost SDR platform","authors":"Varuliantor Dear;Mohammad Sigit Arifianto;Prayitno Abadi;Cahyo Purnomo;Asnawi Husin;Adit Kurniawan;I. S. Iskandar","doi":"10.1029/2023RS007877","DOIUrl":null,"url":null,"abstract":"The development of a digital high-frequency (HF) radio communication system requires an ionospheric channel model from the channel impulse response (CIR) measurement. Although the Watterson ionosphere channel model has been available and used for a long time, several CIR measurements have been conducted in all regions of the Earth in an attempt to validate or replace the Watterson channel model with a suitable model for their region. However, only a few CIR measurements were conducted in low-latitude regions, especially over Indonesia. In this study, we develop the CIR measurement system for the near vertical incidence skywave (NVIS) propagation mode over Java Island based on the software defined radio platform to meet low-cost and simple operation requirements. The specification of the system is based on the International Telecommunication Union ionospheric channel characteristic document and increased in order to be able to capture higher values. Results from a 1-week campaign measurement period show the ability of the system to measure the root mean square of time delay within the range of 0.2–1.3 ms and the Doppler shift within the range of 0.7–1.1 Hz in the quiet conditions of the ionosphere. Further measurements will be conducted to obtain a comprehensive ionosphere CIR that is useful for designing the NVIS-HF digital communication in Indonesia, which is located beneath the crest region of an equatorial ionospheric anomaly.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 6","pages":"1-17"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10579712/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of a digital high-frequency (HF) radio communication system requires an ionospheric channel model from the channel impulse response (CIR) measurement. Although the Watterson ionosphere channel model has been available and used for a long time, several CIR measurements have been conducted in all regions of the Earth in an attempt to validate or replace the Watterson channel model with a suitable model for their region. However, only a few CIR measurements were conducted in low-latitude regions, especially over Indonesia. In this study, we develop the CIR measurement system for the near vertical incidence skywave (NVIS) propagation mode over Java Island based on the software defined radio platform to meet low-cost and simple operation requirements. The specification of the system is based on the International Telecommunication Union ionospheric channel characteristic document and increased in order to be able to capture higher values. Results from a 1-week campaign measurement period show the ability of the system to measure the root mean square of time delay within the range of 0.2–1.3 ms and the Doppler shift within the range of 0.7–1.1 Hz in the quiet conditions of the ionosphere. Further measurements will be conducted to obtain a comprehensive ionosphere CIR that is useful for designing the NVIS-HF digital communication in Indonesia, which is located beneath the crest region of an equatorial ionospheric anomaly.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.