Fully Distributed Model-Free Flocking of Multiple Euler-Lagrange Systems

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal and Information Processing over Networks Pub Date : 2024-06-26 DOI:10.1109/TSIPN.2024.3419437
Mingkang Long;Yin Chen;Housheng Su
{"title":"Fully Distributed Model-Free Flocking of Multiple Euler-Lagrange Systems","authors":"Mingkang Long;Yin Chen;Housheng Su","doi":"10.1109/TSIPN.2024.3419437","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the leader-follower flocking issue of multiple Euler-Lagrange systems (MELSs) with time-varying input disturbances and completely unknown model parameter information under a proximity graph. Particularly, each follower can only access information from other agents that the relative distance between them is not greater than communication distance. Firstly, based on adaptive control theory, we propose a model-free leader-follower flocking algorithm with constant coupling gains, that is the controller design does not require any dynamic parameter information. Then, for fully distributed design (i.e. no requirement for any global information of the communication graph), edge-based adaptive coupling gains are applied for the above algorithm. The leader-follower flocking of MELSs can be achieved by all proposed algorithms under a connected and no-collision initial proximity graph. Finally, we show some simulation results to illustrate the effectiveness of all proposed flocking algorithms.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"565-573"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10572318/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the leader-follower flocking issue of multiple Euler-Lagrange systems (MELSs) with time-varying input disturbances and completely unknown model parameter information under a proximity graph. Particularly, each follower can only access information from other agents that the relative distance between them is not greater than communication distance. Firstly, based on adaptive control theory, we propose a model-free leader-follower flocking algorithm with constant coupling gains, that is the controller design does not require any dynamic parameter information. Then, for fully distributed design (i.e. no requirement for any global information of the communication graph), edge-based adaptive coupling gains are applied for the above algorithm. The leader-follower flocking of MELSs can be achieved by all proposed algorithms under a connected and no-collision initial proximity graph. Finally, we show some simulation results to illustrate the effectiveness of all proposed flocking algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多个欧拉-拉格朗日系统的全分布式无模型成群飞行
本文研究了具有时变输入干扰和完全未知模型参数信息的多欧拉-拉格朗日系统(MELS)在邻近图下的领导者-追随者成群问题。特别是,每个跟随者只能从相对距离不大于通信距离的其他代理获取信息。首先,基于自适应控制理论,我们提出了一种耦合增益恒定的无模型领导者-追随者成群算法,即控制器设计不需要任何动态参数信息。然后,为了实现全分布式设计(即不需要任何通信图的全局信息),上述算法采用了基于边的自适应耦合增益。在连通且无碰撞的初始邻近图下,所有提出的算法都能实现 MELS 的领导者-追随者成群。最后,我们展示了一些仿真结果,以说明所有建议的成群算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Signal and Information Processing over Networks
IEEE Transactions on Signal and Information Processing over Networks Computer Science-Computer Networks and Communications
CiteScore
5.80
自引率
12.50%
发文量
56
期刊介绍: The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.
期刊最新文献
Reinforcement Learning-Based Event-Triggered Constrained Containment Control for Perturbed Multiagent Systems Finite-Time Performance Mask Function-Based Distributed Privacy-Preserving Consensus: Case Study on Optimal Dispatch of Energy System Discrete-Time Controllability of Cartesian Product Networks Generalized Simplicial Attention Neural Networks A Continuous-Time Algorithm for Distributed Optimization With Nonuniform Time-Delay Under Switching and Unbalanced Digraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1