MXene-Derived TiO2/Starbon Nanocomposite as a Remarkable Electrode Material for Coin-Cell Symmetric Supercapacitor.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-07-04 DOI:10.1002/smll.202403552
Sanjay D Sutar, Indrajit Patil, Haridas Parse, Prateekshita Mukherjee, Anita Swami
{"title":"MXene-Derived TiO<sub>2</sub>/Starbon Nanocomposite as a Remarkable Electrode Material for Coin-Cell Symmetric Supercapacitor.","authors":"Sanjay D Sutar, Indrajit Patil, Haridas Parse, Prateekshita Mukherjee, Anita Swami","doi":"10.1002/smll.202403552","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the synthesis of a MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>)-derived TiO<sub>2</sub>/starbon (M-TiO<sub>2</sub>/Starbon-800 °C) nanocomposite using a facile calcination method is explored. High-temperature exposure transforms layered Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> into rod-like TiO<sub>2</sub> and starbon into amorphous carbon. The resulting M-TiO<sub>2</sub>/Starbon-800 °C nanocomposite exhibits a significantly larger surface area and pore volume compared to its individual components, leading to superior electrochemical performance. In a three-electrode configuration, the nanocomposite achieved a specific capacitance (C<sub>sp</sub>) of 1352 Fg⁻¹ at 1 Ag⁻¹, while retaining more than 99% of its C<sub>sp</sub> after 50 000 charge/discharge cycles. Furthermore, when incorporated into a two-electrode symmetric coin cell, it demonstrates a C<sub>sp</sub> of 115 Fg⁻¹ along with exceptional long cycle life. Moreover, the device shows an energy density (ED) of 51 Whkg<sup>-1</sup> and a power density (PD) of 7912 Wkg<sup>-1</sup> at 5 Ag<sup>-1</sup>. The enhanced charge storage is attributed to the formation of a porous structure with a high specific surface area resulting from the interaction between M-TiO<sub>2</sub> nanorods and starbon, which facilitates efficient ion penetration.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202403552","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the synthesis of a MXene (Ti3C2Tx)-derived TiO2/starbon (M-TiO2/Starbon-800 °C) nanocomposite using a facile calcination method is explored. High-temperature exposure transforms layered Ti3C2Tx into rod-like TiO2 and starbon into amorphous carbon. The resulting M-TiO2/Starbon-800 °C nanocomposite exhibits a significantly larger surface area and pore volume compared to its individual components, leading to superior electrochemical performance. In a three-electrode configuration, the nanocomposite achieved a specific capacitance (Csp) of 1352 Fg⁻¹ at 1 Ag⁻¹, while retaining more than 99% of its Csp after 50 000 charge/discharge cycles. Furthermore, when incorporated into a two-electrode symmetric coin cell, it demonstrates a Csp of 115 Fg⁻¹ along with exceptional long cycle life. Moreover, the device shows an energy density (ED) of 51 Whkg-1 and a power density (PD) of 7912 Wkg-1 at 5 Ag-1. The enhanced charge storage is attributed to the formation of a porous structure with a high specific surface area resulting from the interaction between M-TiO2 nanorods and starbon, which facilitates efficient ion penetration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MXene 衍生的 TiO2/Starbon 纳米复合材料是一种用于纽扣电池对称超级电容器的出色电极材料。
本研究采用简便的煅烧方法合成了一种由 MXene(Ti3C2Tx)衍生的 TiO2/Starbon (M-TiO2/Starbon-800 ℃)纳米复合材料。高温曝晒可将层状 Ti3C2Tx 转变为棒状 TiO2,将星状碳转变为无定形碳。由此产生的 M-TiO2/Starbon800 ℃ 纳米复合材料的比表面积和孔隙率都比其单独成分大得多,因而具有优异的电化学性能。在三电极配置中,该纳米复合材料在 1 Ag-¹ 条件下的比电容(Csp)达到了 1352 Fg-¹,同时在 50 000 次充放电循环后仍能保持 99% 以上的 Csp。此外,当把这种复合材料应用到双电极对称纽扣电池中时,它的比电容达到了 115 Fg-¹,并且具有超长的循环寿命。此外,在 5 Ag-1 条件下,该器件的能量密度(ED)为 51 Whkg-1,功率密度(PD)为 7912 Wkg-1。电荷存储的增强归因于 M-TiO2 纳米棒和星形碳之间的相互作用形成了具有高比表面积的多孔结构,从而促进了离子的有效渗透。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
3D Wetting Gradient Janus Sports Bras for Efficient Sweat Removal: A Strategy to Improve Women's Sports Comfort and Health. Amphiphilic Nanoscale Antifog Coatings: Improved Chemical Robustness by Continuous Assembly of Polymers. An Effective Catholyte for Sulfide-Based All-Solid-State Batteries Utilizing Gas Absorbents. Arrays of Bowl-Shaped Janus Particle Film with Structured Colors. Fully Printed Multilayer Ceramic Capacitors Based on High-k Perovskite Nanosheets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1