Marimuthu Kumaravel, Patel Prashanti, Amir Weil, Laura Kozin, Shira Raikin Barak, Maggie Gortikov, Moti Peres, Gal Or, Ortal Bakhshian, Idan Elingold, Avi Tsarfaty, Amir Raz, Navot Galpaz
{"title":"Seasonal impact on embryogenic callus induction under subtropical conditions in banana (Musa spp. cv. Grand Naine [AAA])","authors":"Marimuthu Kumaravel, Patel Prashanti, Amir Weil, Laura Kozin, Shira Raikin Barak, Maggie Gortikov, Moti Peres, Gal Or, Ortal Bakhshian, Idan Elingold, Avi Tsarfaty, Amir Raz, Navot Galpaz","doi":"10.1007/s11240-024-02745-1","DOIUrl":null,"url":null,"abstract":"<p>Gene editing tools for banana crop improvement necessitates efficient embryogenic cell suspensions, which are derived through embryogenic calli (EC). Although many factors are known to influence EC formation, the roles of seasonal effects and environmental factors in EC induction of banana remain unclear. We therefore examined the formation of EC from immature male flower buds (IMFB) collected in each month of the years 2020 and 2022. Among 12 batches examined, IMFB initiated between January and April produced the highest percentage of EC in both years. In 2020, the percent of EC ranges from 8.22 to 12.14, whereas in 2022 the EC percentage ranges from 2.50 to 4.47. IMFB initiated from May to August produced moderate response and those initiated between September and December gave the lowest percentage of EC in both the years. Plants that generated highest percentage of EC underwent transition from vegetative to reproductive phase in autumn and flowered in winter. During this period, environmental factors such as global radiation, relative humidity and temperature were relatively low compared to summer. In contrast, plants that underwent vegetative–reproductive transition under extreme summer conditions and flowered at the end of summer and autumn yielded lowest percentage of EC. Exposure to high temperature and radiation during this period might have altered inflorescence development. Our results indicate that seasonal alterations in environmental factors influence the rate of EC induction.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":"81 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell, Tissue and Organ Culture","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02745-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gene editing tools for banana crop improvement necessitates efficient embryogenic cell suspensions, which are derived through embryogenic calli (EC). Although many factors are known to influence EC formation, the roles of seasonal effects and environmental factors in EC induction of banana remain unclear. We therefore examined the formation of EC from immature male flower buds (IMFB) collected in each month of the years 2020 and 2022. Among 12 batches examined, IMFB initiated between January and April produced the highest percentage of EC in both years. In 2020, the percent of EC ranges from 8.22 to 12.14, whereas in 2022 the EC percentage ranges from 2.50 to 4.47. IMFB initiated from May to August produced moderate response and those initiated between September and December gave the lowest percentage of EC in both the years. Plants that generated highest percentage of EC underwent transition from vegetative to reproductive phase in autumn and flowered in winter. During this period, environmental factors such as global radiation, relative humidity and temperature were relatively low compared to summer. In contrast, plants that underwent vegetative–reproductive transition under extreme summer conditions and flowered at the end of summer and autumn yielded lowest percentage of EC. Exposure to high temperature and radiation during this period might have altered inflorescence development. Our results indicate that seasonal alterations in environmental factors influence the rate of EC induction.
期刊介绍:
This journal highlights the myriad breakthrough technologies and discoveries in plant biology and biotechnology. Plant Cell, Tissue and Organ Culture (PCTOC: Journal of Plant Biotechnology) details high-throughput analysis of gene function and expression, gene silencing and overexpression analyses, RNAi, siRNA, and miRNA studies, and much more. It examines the transcriptional and/or translational events involved in gene regulation as well as those molecular controls involved in morphogenesis of plant cells and tissues.
The journal also covers practical and applied plant biotechnology, including regeneration, organogenesis and somatic embryogenesis, gene transfer, gene flow, secondary metabolites, metabolic engineering, and impact of transgene(s) dissemination into managed and unmanaged plant systems.