{"title":"An Erratic Path Toward Discovery","authors":"Robert A. Weinberg","doi":"10.1146/annurev-cancerbio-062822-102816","DOIUrl":null,"url":null,"abstract":"Through a series of accidents of history, my career began just when the revolution in molecular biology was taking place. The allure of molecular biology attracted me to exploiting tumor viruses as experimental models of the nucleic acid metabolism of cells. The fact that these viruses cause cancer was incidental but eventually led to an interest in cancer pathogenesis, exploiting them to understand the mechanisms of cell transformation. This made it possible to test the speculation that cell transformation derived from the mutation of cellular genes and that cancer cell behavior is driven by the actions of resulting mutant alleles of these genes. In 1979, we showed that cells that had been transformed by 3-methylcholanthrene carried a mutant oncogenic allele. This work progressed so that by 1982 my research group and others demonstrated that human bladder carcinoma cells carried a point-mutated <jats:italic>RAS</jats:italic> oncogene, providing a direct proof of the mutational theory of cancer pathogenesis.","PeriodicalId":501431,"journal":{"name":"Annual Review of Cancer Biology","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Cancer Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-cancerbio-062822-102816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Through a series of accidents of history, my career began just when the revolution in molecular biology was taking place. The allure of molecular biology attracted me to exploiting tumor viruses as experimental models of the nucleic acid metabolism of cells. The fact that these viruses cause cancer was incidental but eventually led to an interest in cancer pathogenesis, exploiting them to understand the mechanisms of cell transformation. This made it possible to test the speculation that cell transformation derived from the mutation of cellular genes and that cancer cell behavior is driven by the actions of resulting mutant alleles of these genes. In 1979, we showed that cells that had been transformed by 3-methylcholanthrene carried a mutant oncogenic allele. This work progressed so that by 1982 my research group and others demonstrated that human bladder carcinoma cells carried a point-mutated RAS oncogene, providing a direct proof of the mutational theory of cancer pathogenesis.