{"title":"Daily lake-level time series spectral analysis using EMD, VMD, EWT, and EFD","authors":"Farhad Alizadeh, Kiyoumars Roushangar","doi":"10.2166/wcc.2024.637","DOIUrl":null,"url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/6/10.2166_wcc.2024.637/2/m_jwc-d-23-00637gf01.png?Expires=1722683640&Signature=cBgAkLoh725aa5EoW6wrXfzgkHp7xdaslRrGACeOe9cFRZWlvrTSpHZeNJdDUGr0bppUnOQVdzefoV12112rF37Wb92~CdWRAvYwppv23erG5m0s3hp6SV~JUN604csFZ1eAQ5e4n64KB4gvOX1g5lA3gYKTahdK4rmYRlz9YJpDDAziFI037g1qhiMOqTVncOzxRGP7lsyjK2yL5huYtiZvgcAahNzsr1rKMBkoVMKjrlDxolzs--4ceWtbbdz535ie1nibZkVKbQwBtVnQnXSFzqG3YPz62kaLYEA0eo6QufE4Z9oOjD45avXmNs9VO3d8UBsbuaeqb8EMSwtmkw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"jwc-d-23-00637gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/6/10.2166_wcc.2024.637/2/m_jwc-d-23-00637gf01.png?Expires=1722683640&Signature=cBgAkLoh725aa5EoW6wrXfzgkHp7xdaslRrGACeOe9cFRZWlvrTSpHZeNJdDUGr0bppUnOQVdzefoV12112rF37Wb92~CdWRAvYwppv23erG5m0s3hp6SV~JUN604csFZ1eAQ5e4n64KB4gvOX1g5lA3gYKTahdK4rmYRlz9YJpDDAziFI037g1qhiMOqTVncOzxRGP7lsyjK2yL5huYtiZvgcAahNzsr1rKMBkoVMKjrlDxolzs--4ceWtbbdz535ie1nibZkVKbQwBtVnQnXSFzqG3YPz62kaLYEA0eo6QufE4Z9oOjD45avXmNs9VO3d8UBsbuaeqb8EMSwtmkw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/6/10.2166_wcc.2024.637/2/m_jwc-d-23-00637gf01.png?Expires=1722683640&Signature=cBgAkLoh725aa5EoW6wrXfzgkHp7xdaslRrGACeOe9cFRZWlvrTSpHZeNJdDUGr0bppUnOQVdzefoV12112rF37Wb92~CdWRAvYwppv23erG5m0s3hp6SV~JUN604csFZ1eAQ5e4n64KB4gvOX1g5lA3gYKTahdK4rmYRlz9YJpDDAziFI037g1qhiMOqTVncOzxRGP7lsyjK2yL5huYtiZvgcAahNzsr1rKMBkoVMKjrlDxolzs--4ceWtbbdz535ie1nibZkVKbQwBtVnQnXSFzqG3YPz62kaLYEA0eo6QufE4Z9oOjD45avXmNs9VO3d8UBsbuaeqb8EMSwtmkw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"jwc-d-23-00637gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/6/10.2166_wcc.2024.637/2/m_jwc-d-23-00637gf01.png?Expires=1722683640&Signature=cBgAkLoh725aa5EoW6wrXfzgkHp7xdaslRrGACeOe9cFRZWlvrTSpHZeNJdDUGr0bppUnOQVdzefoV12112rF37Wb92~CdWRAvYwppv23erG5m0s3hp6SV~JUN604csFZ1eAQ5e4n64KB4gvOX1g5lA3gYKTahdK4rmYRlz9YJpDDAziFI037g1qhiMOqTVncOzxRGP7lsyjK2yL5huYtiZvgcAahNzsr1rKMBkoVMKjrlDxolzs--4ceWtbbdz535ie1nibZkVKbQwBtVnQnXSFzqG3YPz62kaLYEA0eo6QufE4Z9oOjD45avXmNs9VO3d8UBsbuaeqb8EMSwtmkw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>This study investigates the dynamics of daily Urmia Lake level (ULL) changes using spectral analysis tools to discover fluctuating patterns in the ULL series. Therefore, in the present research, the empirical mode decomposition (EMD), variational mode decomposition (VMD), empirical wavelet transform (EWT), and empirical Fourier decomposition (EFD) were used to analyze the ULL signal. ULL series were decomposed into subseries, and the optimized outcome was used. All methods concluded that the ULL series has a steep downward trend. Signal reconstruction was performed, and it was inferred that EFD could not estimate the ULL series appropriately and had root-mean-square error (RMSE) = 12.26. Different from EFD, other methods performed better signal construction according to RMSE and error analysis. The mode-mixing issue was the last step in verifying the capabilities of signal-analyzing methods. Based on the power spectral density (PSD), it was seen that EMDs had mode-mixing problems and limitations in signal decomposition, whereas VMD and EWT did not have these issues. Results demonstrated that the present study has some limitations. Overall, it was concluded that VMD performed better in terms of RMSE, error analysis, reconstruction, mode-mixing problems, and PSD analysis while decomposing and extracting features from the ULL signal.</p>","PeriodicalId":510893,"journal":{"name":"Journal of Water & Climate Change","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water & Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2024.637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
View largeDownload slide
View largeDownload slide
Close modal
This study investigates the dynamics of daily Urmia Lake level (ULL) changes using spectral analysis tools to discover fluctuating patterns in the ULL series. Therefore, in the present research, the empirical mode decomposition (EMD), variational mode decomposition (VMD), empirical wavelet transform (EWT), and empirical Fourier decomposition (EFD) were used to analyze the ULL signal. ULL series were decomposed into subseries, and the optimized outcome was used. All methods concluded that the ULL series has a steep downward trend. Signal reconstruction was performed, and it was inferred that EFD could not estimate the ULL series appropriately and had root-mean-square error (RMSE) = 12.26. Different from EFD, other methods performed better signal construction according to RMSE and error analysis. The mode-mixing issue was the last step in verifying the capabilities of signal-analyzing methods. Based on the power spectral density (PSD), it was seen that EMDs had mode-mixing problems and limitations in signal decomposition, whereas VMD and EWT did not have these issues. Results demonstrated that the present study has some limitations. Overall, it was concluded that VMD performed better in terms of RMSE, error analysis, reconstruction, mode-mixing problems, and PSD analysis while decomposing and extracting features from the ULL signal.