Numerical and Experimental Investigation of Heat Transfer in the Porous Media of an Additively Manufactured Evaporator of a Two-Phase Mechanically Pumped Loop for Space Applications
Luca Valdarno, Vijay K. Dhir, Benjamin Furst, Eric Sunada
{"title":"Numerical and Experimental Investigation of Heat Transfer in the Porous Media of an Additively Manufactured Evaporator of a Two-Phase Mechanically Pumped Loop for Space Applications","authors":"Luca Valdarno, Vijay K. Dhir, Benjamin Furst, Eric Sunada","doi":"10.1007/s12217-024-10122-y","DOIUrl":null,"url":null,"abstract":"<div><p>Two-phase pumped cooling systems are applied when it is required to maintain a very stable temperature for heat dissipation in a system. A novel additively manufactured evaporator for two-phase thermal control was developed at NASA Jet Propulsion Laboratory (JPL). The Two-Phase Mechanically Pumped Loop (2PMPL) allows to manage the heat transfer with much wider breadth of control authority compared to capillary-based systems, while alleviating the system's sensitivity to pressure drops. The focus of this work is the understanding and capturing the micro-scale evaporation occurring in the porous structure of the evaporator. The Boiling and Phase Change Heat Transfer Laboratory at the University of California, Los Angeles (UCLA) developed an all-encompassing numerical simulation tool to predict the operational thermal behavior of the evaporator considering the effect of the liquid-vapor interface at the wick-to-vapor boundary. The numerical model incorporated the behaviour of the liquid-vapor meniscus at particle level located along the evaporative boundary between the wick structure and the vapor chamber. The numerical model allowed to study the effect of different parameters, such as boundary conditions, geometry, wick and fluid properties. An experimental setup was built at UCLA in order to characterize the heat transfer within an additively manufactured porous sample fabricated at JPL and in particular its evaporative heat load under certain heat inputs. The experimental efforts served as validation for the numerical results and aided in the characterization of the transient phenomena, such as dry-out.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-024-10122-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10122-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-phase pumped cooling systems are applied when it is required to maintain a very stable temperature for heat dissipation in a system. A novel additively manufactured evaporator for two-phase thermal control was developed at NASA Jet Propulsion Laboratory (JPL). The Two-Phase Mechanically Pumped Loop (2PMPL) allows to manage the heat transfer with much wider breadth of control authority compared to capillary-based systems, while alleviating the system's sensitivity to pressure drops. The focus of this work is the understanding and capturing the micro-scale evaporation occurring in the porous structure of the evaporator. The Boiling and Phase Change Heat Transfer Laboratory at the University of California, Los Angeles (UCLA) developed an all-encompassing numerical simulation tool to predict the operational thermal behavior of the evaporator considering the effect of the liquid-vapor interface at the wick-to-vapor boundary. The numerical model incorporated the behaviour of the liquid-vapor meniscus at particle level located along the evaporative boundary between the wick structure and the vapor chamber. The numerical model allowed to study the effect of different parameters, such as boundary conditions, geometry, wick and fluid properties. An experimental setup was built at UCLA in order to characterize the heat transfer within an additively manufactured porous sample fabricated at JPL and in particular its evaporative heat load under certain heat inputs. The experimental efforts served as validation for the numerical results and aided in the characterization of the transient phenomena, such as dry-out.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.