{"title":"Design and experimental evaluation of a novel flow-mode magnetorheological damper without accumulator","authors":"Quoc-Duy Bui, Long-Vuong Hoang, Huu-Quan Nguyen, Quoc Hung Nguyen","doi":"10.1177/1045389x241256094","DOIUrl":null,"url":null,"abstract":"Researchers in the field of vibration control have shown increasing interest in magneto-rheological dampers (MRDs) in recent years. Conventional flow-mode MRDs typically employ a gas chamber as an accumulator to accommodate volume changes and promote fluid communication. However, this approach introduces manufacturing complexities and raises production costs. To overcome these challenges, we propose a novel configuration for flow-mode MRDs that replaces the accumulator with a structural constraint. This modification leads to a more compact and cost-effective MRD solution suitable for engineering applications. This paper presents an introduction, followed by the configuration and design of the novel MRD for a case study involving a vehicle suspension system. To enhance output performance, we optimize the significant geometry of the damper using the finite element method (FEM), taking into account the damping force, off-state force, and inductive time constant of the damper. Based on the optimal simulation results, we provide a detailed design of the optimized flow-mode MRD without an accumulator for prototype fabrication. To assess the practical performance of the proposed MRD prototype, we conducted experiments on a test rig and engaged in comprehensive discussions based on the obtained results.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"25 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x241256094","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers in the field of vibration control have shown increasing interest in magneto-rheological dampers (MRDs) in recent years. Conventional flow-mode MRDs typically employ a gas chamber as an accumulator to accommodate volume changes and promote fluid communication. However, this approach introduces manufacturing complexities and raises production costs. To overcome these challenges, we propose a novel configuration for flow-mode MRDs that replaces the accumulator with a structural constraint. This modification leads to a more compact and cost-effective MRD solution suitable for engineering applications. This paper presents an introduction, followed by the configuration and design of the novel MRD for a case study involving a vehicle suspension system. To enhance output performance, we optimize the significant geometry of the damper using the finite element method (FEM), taking into account the damping force, off-state force, and inductive time constant of the damper. Based on the optimal simulation results, we provide a detailed design of the optimized flow-mode MRD without an accumulator for prototype fabrication. To assess the practical performance of the proposed MRD prototype, we conducted experiments on a test rig and engaged in comprehensive discussions based on the obtained results.
期刊介绍:
The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.