Low-parameter GAN inversion framework based on hypernetwork

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-17 DOI:10.1007/s00530-024-01379-9
Hongyang Wang, Ting Wang, Dong Xiang, Wenjie Yang, Jia Li
{"title":"Low-parameter GAN inversion framework based on hypernetwork","authors":"Hongyang Wang, Ting Wang, Dong Xiang, Wenjie Yang, Jia Li","doi":"10.1007/s00530-024-01379-9","DOIUrl":null,"url":null,"abstract":"<p>In response to the significant parameter overhead in current Generative Adversarial Networks (GAN) inversion methods when balancing high fidelity and editability, we propose a novel lightweight inversion framework based on an optimized generator. We aim to balance fidelity and editability within the StyleGAN latent space. To achieve this, the study begins by mapping raw data to the <span>\\({W}^{+}\\)</span> latent space, enhancing the quality of the resulting inverted images. Following this mapping step, we introduce a carefully designed lightweight hypernetwork. This hypernetwork operates to selectively modify primary detailed features, thereby leading to a notable reduction in the parameter count essential for model training. By learning parameter variations, the precision of subsequent image editing is augmented. Lastly, our approach integrates a multi-channel parallel optimization computing module into the above structure to decrease the time needed for model image processing. Extensive experiments were conducted in facial and automotive imagery domains to validate our lightweight inversion framework. Results demonstrate that our method achieves equivalent or superior inversion and editing quality, utilizing fewer parameters.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01379-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the significant parameter overhead in current Generative Adversarial Networks (GAN) inversion methods when balancing high fidelity and editability, we propose a novel lightweight inversion framework based on an optimized generator. We aim to balance fidelity and editability within the StyleGAN latent space. To achieve this, the study begins by mapping raw data to the \({W}^{+}\) latent space, enhancing the quality of the resulting inverted images. Following this mapping step, we introduce a carefully designed lightweight hypernetwork. This hypernetwork operates to selectively modify primary detailed features, thereby leading to a notable reduction in the parameter count essential for model training. By learning parameter variations, the precision of subsequent image editing is augmented. Lastly, our approach integrates a multi-channel parallel optimization computing module into the above structure to decrease the time needed for model image processing. Extensive experiments were conducted in facial and automotive imagery domains to validate our lightweight inversion framework. Results demonstrate that our method achieves equivalent or superior inversion and editing quality, utilizing fewer parameters.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于超网络的低参数 GAN 反演框架
当前的生成对抗网络(GAN)反演方法在兼顾高保真和可编辑性时参数开销很大,针对这一问题,我们提出了一种基于优化生成器的新型轻量级反演框架。我们的目标是在 StyleGAN 潜在空间内平衡保真度和可编辑性。为了实现这一目标,研究首先将原始数据映射到 \({W}^{+}\) 潜在空间,从而提高反转图像的质量。在这一映射步骤之后,我们引入了一个精心设计的轻量级超网络。该超网络可选择性地修改主要细节特征,从而显著减少模型训练所需的参数数量。通过学习参数变化,可以提高后续图像编辑的精确度。最后,我们的方法将多通道并行优化计算模块集成到上述结构中,以减少模型图像处理所需的时间。我们在面部和汽车图像领域进行了广泛的实验,以验证我们的轻量级反演框架。结果表明,我们的方法利用较少的参数就能获得同等或更高的反演和编辑质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1