Adaptafood: an intelligent system to adapt recipes to specialised diets and healthy lifestyles.

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Multimedia Systems Pub Date : 2025-01-01 Epub Date: 2025-02-01 DOI:10.1007/s00530-025-01667-y
Andrea Morales-Garzón, Karel Gutiérrez-Batista, Maria J Martin-Bautista
{"title":"Adaptafood: an intelligent system to adapt recipes to specialised diets and healthy lifestyles.","authors":"Andrea Morales-Garzón, Karel Gutiérrez-Batista, Maria J Martin-Bautista","doi":"10.1007/s00530-025-01667-y","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents AdaptaFood, a system to adapt recipes to specific dietary constraints. This is a common societal issue due to various dietary needs arising from medical conditions, allergies, or nutritional preferences. AdaptaFood provides recipe adaptations from two inputs: a recipe image (a fine-tuned image-captioning model allows us to extract the ingredients) or a recipe object (we extract the ingredients from the recipe features). For the adaptation, we propose to use an attention-based language sentence model based on BERT to learn the semantics of the ingredients and, therefore, discover the hidden relations among them. Specifically, we use them to perform two tasks: (1) align the food items from several sources to expand recipe information; (2) use the semantic features embedded in the representation vector to detect potential food substitutes for the ingredients. The results show that the model successfully learns domain-specific knowledge after re-training it to the food computing domain. Combining this acquired knowledge with the adopted strategy for sentence representation and food replacement enables the generation of high-quality recipe versions and dealing with the heterogeneity of different-origin food data.</p>","PeriodicalId":51138,"journal":{"name":"Multimedia Systems","volume":"31 1","pages":"87"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787260/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-025-01667-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents AdaptaFood, a system to adapt recipes to specific dietary constraints. This is a common societal issue due to various dietary needs arising from medical conditions, allergies, or nutritional preferences. AdaptaFood provides recipe adaptations from two inputs: a recipe image (a fine-tuned image-captioning model allows us to extract the ingredients) or a recipe object (we extract the ingredients from the recipe features). For the adaptation, we propose to use an attention-based language sentence model based on BERT to learn the semantics of the ingredients and, therefore, discover the hidden relations among them. Specifically, we use them to perform two tasks: (1) align the food items from several sources to expand recipe information; (2) use the semantic features embedded in the representation vector to detect potential food substitutes for the ingredients. The results show that the model successfully learns domain-specific knowledge after re-training it to the food computing domain. Combining this acquired knowledge with the adopted strategy for sentence representation and food replacement enables the generation of high-quality recipe versions and dealing with the heterogeneity of different-origin food data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Multimedia Systems
Multimedia Systems 工程技术-计算机:理论方法
CiteScore
5.40
自引率
7.70%
发文量
148
审稿时长
4.5 months
期刊介绍: This journal details innovative research ideas, emerging technologies, state-of-the-art methods and tools in all aspects of multimedia computing, communication, storage, and applications. It features theoretical, experimental, and survey articles.
期刊最新文献
Adaptafood: an intelligent system to adapt recipes to specialised diets and healthy lifestyles. Generating generalized zero-shot learning based on dual-path feature enhancement Triple fusion and feature pyramid decoder for RGB-D semantic segmentation Automatic lymph node segmentation using deep parallel squeeze & excitation and attention Unet CAFIN: cross-attention based face image repair network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1