Generating generalized zero-shot learning based on dual-path feature enhancement

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-19 DOI:10.1007/s00530-024-01485-8
Xinyi Chang, Zhen Wang, Wenhao Liu, Limeng Gao, Bingshuai Yan
{"title":"Generating generalized zero-shot learning based on dual-path feature enhancement","authors":"Xinyi Chang, Zhen Wang, Wenhao Liu, Limeng Gao, Bingshuai Yan","doi":"10.1007/s00530-024-01485-8","DOIUrl":null,"url":null,"abstract":"<p>Generalized zero-shot learning (GZSL) can classify both seen and unseen class samples, which plays a significant role in practical applications such as emerging species recognition and medical image recognition. However, most existing GZSL methods directly use the pre-trained deep model to learn the image feature. Due to the data distribution inconsistency between the GZSL dataset and the pre-training dataset, the obtained image features have an inferior performance. The distribution of different class image features is similar, which makes them difficult to distinguish. To solve this problem, we propose a dual-path feature enhancement (DPFE) model, which consists of four modules: the feature generation network (FGN), the local fine-grained feature enhancement (LFFE) module, the global coarse-grained feature enhancement (GCFE) module, and the feedback module (FM). The feature generation network can synthesize unseen class image features. We enhance the image features’ discriminative and semantic relevance from both local and global perspectives. To focus on the image’s local discriminative regions, the LFFE module processes the image in blocks and minimizes the semantic cycle-consistency loss to ensure that the region block features contain key classification semantic information. To prevent information loss caused by image blocking, we design the GCFE module. It ensures the consistency between the global image features and the semantic centers, thereby improving the discriminative power of the features. In addition, the feedback module feeds the discriminator network’s middle layer information back to the generator network. As a result, the synthesized image features are more similar to the real features. Experimental results demonstrate that the proposed DPFE method outperforms the state-of-the-arts on four zero-shot learning benchmark datasets.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01485-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Generalized zero-shot learning (GZSL) can classify both seen and unseen class samples, which plays a significant role in practical applications such as emerging species recognition and medical image recognition. However, most existing GZSL methods directly use the pre-trained deep model to learn the image feature. Due to the data distribution inconsistency between the GZSL dataset and the pre-training dataset, the obtained image features have an inferior performance. The distribution of different class image features is similar, which makes them difficult to distinguish. To solve this problem, we propose a dual-path feature enhancement (DPFE) model, which consists of four modules: the feature generation network (FGN), the local fine-grained feature enhancement (LFFE) module, the global coarse-grained feature enhancement (GCFE) module, and the feedback module (FM). The feature generation network can synthesize unseen class image features. We enhance the image features’ discriminative and semantic relevance from both local and global perspectives. To focus on the image’s local discriminative regions, the LFFE module processes the image in blocks and minimizes the semantic cycle-consistency loss to ensure that the region block features contain key classification semantic information. To prevent information loss caused by image blocking, we design the GCFE module. It ensures the consistency between the global image features and the semantic centers, thereby improving the discriminative power of the features. In addition, the feedback module feeds the discriminator network’s middle layer information back to the generator network. As a result, the synthesized image features are more similar to the real features. Experimental results demonstrate that the proposed DPFE method outperforms the state-of-the-arts on four zero-shot learning benchmark datasets.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双路径特征增强生成广义零点学习
广义零点学习(Generalized zero-shot learning,GZSL)可以对看到和未看到的类样本进行分类,在新兴物种识别和医学图像识别等实际应用中发挥着重要作用。然而,现有的 GZSL 方法大多直接使用预先训练好的深度模型来学习图像特征。由于 GZSL 数据集和预训练数据集的数据分布不一致,得到的图像特征性能较差。不同类别的图像特征分布相似,难以区分。为了解决这个问题,我们提出了一种双路径特征增强(DPFE)模型,它由四个模块组成:特征生成网络(FGN)、局部细粒度特征增强(LFFE)模块、全局粗粒度特征增强(GCFE)模块和反馈模块(FM)。特征生成网络可以合成未见类图像特征。我们从局部和全局两个角度增强图像特征的辨别力和语义相关性。为了聚焦图像的局部判别区域,LFFE 模块对图像进行分块处理,最大限度地减少语义循环一致性损失,确保区域块特征包含关键的分类语义信息。为了防止图像分块造成的信息损失,我们设计了 GCFE 模块。它确保了全局图像特征与语义中心之间的一致性,从而提高了特征的判别能力。此外,反馈模块将鉴别器网络的中间层信息反馈给生成器网络。因此,合成的图像特征与真实特征更加相似。实验结果表明,所提出的 DPFE 方法在四个零点学习基准数据集上的表现优于同行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1