Impact performance optimization for hydraulic rock drill based on stroke and flow compensation factors

IF 2.1 4区 工程技术 Advances in Mechanical Engineering Pub Date : 2024-06-21 DOI:10.1177/16878132241259579
Siyuan Chang, Min Ye, Daqing Zhang, Yuchuan Ma, Jiale Zhang
{"title":"Impact performance optimization for hydraulic rock drill based on stroke and flow compensation factors","authors":"Siyuan Chang, Min Ye, Daqing Zhang, Yuchuan Ma, Jiale Zhang","doi":"10.1177/16878132241259579","DOIUrl":null,"url":null,"abstract":"In response to the issues of overheating of the shell and insufficient impact energy of the hydraulic rock drill, this paper focuses on the hydraulic rock drill with alternating front and rear return chambers. By establishing nonlinear and linear dynamic models, the influence of stroke amount and flow compensation on the hydraulic system is investigated, and an optimization method for impact characteristics is proposed. Considering factors such as hydraulic clamping force, fluid leakage, and rock properties, a feedback control numerical model is established for the impact system. This model is based on principles drawn from wave dynamics and fluid dynamics theories. It elucidates the dynamic characteristics of the impact piston, reversing valve, and high-pressure accumulator. Combining three linear models, this study investigates the influence of the advance amount of the return signal chamber and the gas pre-charge pressure of the high-pressure accumulator on the impact characteristics. A thorough laser experiment has been created to evaluate the actual rock drilling capabilities of the impact system. Proposed optimal parameters are tested experimentally to compare the impact performance before and after the enhancement. The results indicate an increase in impact power, validating the effectiveness of the proposed improvement method.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":"85 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241259579","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the issues of overheating of the shell and insufficient impact energy of the hydraulic rock drill, this paper focuses on the hydraulic rock drill with alternating front and rear return chambers. By establishing nonlinear and linear dynamic models, the influence of stroke amount and flow compensation on the hydraulic system is investigated, and an optimization method for impact characteristics is proposed. Considering factors such as hydraulic clamping force, fluid leakage, and rock properties, a feedback control numerical model is established for the impact system. This model is based on principles drawn from wave dynamics and fluid dynamics theories. It elucidates the dynamic characteristics of the impact piston, reversing valve, and high-pressure accumulator. Combining three linear models, this study investigates the influence of the advance amount of the return signal chamber and the gas pre-charge pressure of the high-pressure accumulator on the impact characteristics. A thorough laser experiment has been created to evaluate the actual rock drilling capabilities of the impact system. Proposed optimal parameters are tested experimentally to compare the impact performance before and after the enhancement. The results indicate an increase in impact power, validating the effectiveness of the proposed improvement method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于冲程和流量补偿因子的液压凿岩机冲击性能优化
针对液压凿岩机壳体过热、冲击能量不足等问题,本文重点研究了前后回流室交替的液压凿岩机。通过建立非线性和线性动态模型,研究了冲程量和流量补偿对液压系统的影响,并提出了冲击特性的优化方法。考虑到液压夹紧力、液体泄漏和岩石特性等因素,建立了冲击系统的反馈控制数值模型。该模型基于波动力学和流体动力学理论。它阐明了冲击活塞、换向阀和高压蓄能器的动态特性。结合三个线性模型,本研究探讨了返回信号室的提前量和高压蓄能器的气体预充压力对冲击特性的影响。为了评估冲击系统的实际凿岩能力,我们创建了一个全面的激光实验。对提出的最佳参数进行了实验测试,以比较增强前后的冲击性能。结果表明冲击力有所提高,验证了所提改进方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering Engineering-Mechanical Engineering
自引率
4.80%
发文量
353
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
期刊最新文献
Influence of urea solution condition on NOx reduction in marine diesel engines Characteristics of deploying longitudinal folding wings with compound actuation Research on the service life of bearings in the gearbox of rolling mill transmission system under non-steady lubrication state Research and application of a coupled wheel-track off-road robot based on separate track structure Research on energy consumption evaluation and energy-saving design of cranes in service based on structure-mechanism coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1