{"title":"Bright-dark rogue wave transition in coupled AB system via the physics-informed neural networks method","authors":"Shi-Lin Zhang, Min-Hua Wang, Yin-Chuan Zhao","doi":"10.2140/camcos.2024.19.1","DOIUrl":null,"url":null,"abstract":"<p>Physics-informed neural networks (PINNs) can be used not only to predict the solutions of nonlinear partial differential equations, but also to discover the dynamic characteristics and phase transitions of rogue waves in nonlinear systems. Based on improved PINNs, we predict bright-dark one-soliton, two-soliton, two-soliton molecule and rogue wave solutions in a coupled AB system. We find that using only a small number of dynamic evolutionary rogue wave solutions as training data, we can find the phase transition boundary that can distinguish bright and dark rogue waves, and realize the mutual prediction between different rogue wave structures. The results show that the improved algorithm has high prediction accuracy, which provides a promising general technique for discovering and predicting new rogue structures in other parametric coupled systems. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/camcos.2024.19.1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Physics-informed neural networks (PINNs) can be used not only to predict the solutions of nonlinear partial differential equations, but also to discover the dynamic characteristics and phase transitions of rogue waves in nonlinear systems. Based on improved PINNs, we predict bright-dark one-soliton, two-soliton, two-soliton molecule and rogue wave solutions in a coupled AB system. We find that using only a small number of dynamic evolutionary rogue wave solutions as training data, we can find the phase transition boundary that can distinguish bright and dark rogue waves, and realize the mutual prediction between different rogue wave structures. The results show that the improved algorithm has high prediction accuracy, which provides a promising general technique for discovering and predicting new rogue structures in other parametric coupled systems.
物理信息神经网络(PINNs)不仅可用于预测非线性偏微分方程的解,还可用于发现非线性系统中无赖波的动态特征和相变。基于改进后的 PINNs,我们预测了耦合 AB 系统中的明暗单孑子、双孑子、双孑子分子和无赖波解。我们发现,只需使用少量动态演化无赖波解作为训练数据,就能找到区分明暗无赖波的相变边界,并实现不同无赖波结构之间的相互预测。结果表明,改进后的算法具有很高的预测精度,为在其他参数耦合系统中发现和预测新的流氓波结构提供了一种前景广阔的通用技术。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.