Measurement of cryoelectronics heating using a local quantum dot thermometer in silicon

Chip Pub Date : 2024-05-27 DOI:10.1016/j.chip.2024.100097
{"title":"Measurement of cryoelectronics heating using a local quantum dot thermometer in silicon","authors":"","doi":"10.1016/j.chip.2024.100097","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon technology offers the enticing opportunity for monolithic integration of quantum and classical electronic circuits. However, the power consumption levels of classical electronics may compromise the local chip temperature and hence affect the fidelity of qubit operations. In the current work, a quantum-dot-based thermometer embedded in an industry-standard silicon field-effect transistor (FET) was adopted to assess the local temperature increase produced by an active FET placed in close proximity. The impact of both static and dynamic operation regimes was thoroughly investigated. When the FET was operated statically, a power budget of 45 nW at 100-nm separation was found, whereas at 216 μm, the power budget was raised to 150 μW. Negligible temperature increase for the switch frequencies tested up to 10 MHz was observed when operating dynamically. The current work introduced a method to accurately map out the available power budget at a distance from a solid-state quantum processor, and indicated the possible conditions under which cryoelectronics circuits may allow the operation of hybrid quantum–classical systems.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 3","pages":"Article 100097"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000157/pdfft?md5=08ee00550d4fd08f99bd72e49daa1de1&pid=1-s2.0-S2709472324000157-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472324000157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon technology offers the enticing opportunity for monolithic integration of quantum and classical electronic circuits. However, the power consumption levels of classical electronics may compromise the local chip temperature and hence affect the fidelity of qubit operations. In the current work, a quantum-dot-based thermometer embedded in an industry-standard silicon field-effect transistor (FET) was adopted to assess the local temperature increase produced by an active FET placed in close proximity. The impact of both static and dynamic operation regimes was thoroughly investigated. When the FET was operated statically, a power budget of 45 nW at 100-nm separation was found, whereas at 216 μm, the power budget was raised to 150 μW. Negligible temperature increase for the switch frequencies tested up to 10 MHz was observed when operating dynamically. The current work introduced a method to accurately map out the available power budget at a distance from a solid-state quantum processor, and indicated the possible conditions under which cryoelectronics circuits may allow the operation of hybrid quantum–classical systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用硅局部量子点温度计测量低温电子加热
硅技术为量子和经典电子电路的单片集成提供了诱人的机会。然而,经典电子器件的功耗水平可能会影响芯片的局部温度,进而影响量子比特运行的保真度。在这里,我们利用嵌入工业标准硅场效应晶体管(FET)中的量子点温度计来评估近距离放置有源 FET 所产生的局部温度升高。我们研究了静态和动态工作状态的影响。当场效应晶体管静态工作时,我们发现在 100 nm 间隔内的功率预算为 45 nW,而在 216 μm 间隔内,功率预算上升到 150 μW。在动态运行时,我们观察到在高达 10 MHz 的测试开关频率下,温度上升可以忽略不计。我们的工作描述了一种方法,可精确绘制出距离固态量子处理器一定距离的可用功率预算,并指出在哪些条件下低温电子电路可允许混合量子-经典系统运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
On-chip integrated plasmon-induced high-performance self-powered Pt/GaN ultraviolet photodetector On-chip warped three-dimensional InGaN/GaN quantum well diode with transceiver coexistence characters Chip-scale metaphotonic singularities: topological, dynamical, and practical aspects A versatile optoelectronic device for ultrasensitive negative-positive pressure sensing applications Silicon photonic integrated wideband radio frequency self-interference cancellation chip for over-the-air in-band full-duplex communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1